supabase-test
supabase-test is a Supabase-optimized version of pgsql-test with Supabase defaults baked in. It provides instant, isolated PostgreSQL databases for testing with automatic transaction rollbacks, context switching, and clean seeding — configured for Supabase's local development environment. It's also great for GitHub Actions and CI/CD testing.
Explore a full working example (including GitHub Actions CI/CD) in the supabase-test-suite repo.
Install
npm install supabase-test
Features
- ⚡ Instant test DBs — each one seeded, isolated, and UUID-named
- 🔄 Per-test rollback — every test runs in its own transaction or savepoint
- 🛡️ RLS-friendly — test with role-based auth via
.setContext() - 🌱 Flexible seeding — run
.sqlfiles, programmatic seeds, or even load fixtures - 🧪 Compatible with any async runner — works with
Jest,Mocha, etc. - 🧹 Auto teardown — no residue, no reboots, just clean exits
Tutorials
📚 Learn how to test with Supabase →
Table of Contents
- Install
- Features
- Quick Start
getConnections()Overview- PgTestClient API Overview
- Usage Examples
getConnections() Options- Disclaimer
✨ Quick Start
import { getConnections } from 'supabase-test'; let db, teardown; beforeAll(async () => { ({ db, teardown } = await getConnections()); await db.query(`SELECT 1`); // ✅ Ready to run queries }); afterAll(() => teardown());
getConnections() Overview
import { getConnections } from 'supabase-test'; // Complete object destructuring const { pg, db, admin, teardown, manager } = await getConnections(); // Most common pattern const { db, teardown } = await getConnections();
The getConnections() helper sets up a fresh PostgreSQL test database and returns a structured object with:
-
pg: aPgTestClientconnected as the root or superuser — useful for administrative setup or introspection -
db: aPgTestClientconnected as the app-level user — used for running tests with RLS and granted permissions -
admin: aDbAdminutility for managing database state, extensions, roles, and templates -
teardown(): a function that shuts down the test environment and database pool -
manager: a shared connection pool manager (PgTestConnector) behind both clients
Together, these allow fast, isolated, role-aware test environments with per-test rollback and full control over setup and teardown.
The PgTestClient returned by getConnections() is a fully-featured wrapper around pg.Pool. It provides:
- Automatic transaction and savepoint management for test isolation
- Easy switching of role-based contexts for RLS testing
- A clean, high-level API for integration testing PostgreSQL systems
PgTestClient API Overview
let pg: PgTestClient; let teardown: () => Promise<void>; beforeAll(async () => { ({ pg, teardown } = await getConnections()); }); beforeEach(() => pg.beforeEach()); afterEach(() => pg.afterEach()); afterAll(() => teardown());
The PgTestClient returned by getConnections() wraps a pg.Client and provides convenient helpers for query execution, test isolation, and context switching.
Common Methods
-
query(sql, values?)– Run a raw SQL query and get theQueryResult -
beforeEach()– Begins a transaction and sets a savepoint (called at the start of each test) -
afterEach()– Rolls back to the savepoint and commits the outer transaction (cleans up test state) -
setContext({ key: value })– Sets PostgreSQL config variables (likerole) to simulate RLS contexts -
any,one,oneOrNone,many,manyOrNone,none,result– Typed query helpers for specific result expectations
These methods make it easier to build expressive and isolated integration tests with strong typing and error handling.
The PgTestClient returned by getConnections() is a fully-featured wrapper around pg.Pool. It provides:
- Automatic transaction and savepoint management for test isolation
- Easy switching of role-based contexts for RLS testing
- A clean, high-level API for integration testing PostgreSQL systems
Usage Examples
⚡ Basic Setup
import { getConnections } from 'supabase-test'; let db; // A fully wrapped PgTestClient using pg.Pool with savepoint-based rollback per test let teardown; beforeAll(async () => { ({ db, teardown } = await getConnections()); await db.query(` CREATE TABLE users (id SERIAL PRIMARY KEY, name TEXT); CREATE TABLE posts (id SERIAL PRIMARY KEY, user_id INT REFERENCES users(id), content TEXT); INSERT INTO users (name) VALUES ('Alice'), ('Bob'); INSERT INTO posts (user_id, content) VALUES (1, 'Hello world!'), (2, 'Graphile is cool!'); `); }); afterAll(() => teardown()); beforeEach(() => db.beforeEach()); afterEach(() => db.afterEach()); test('user count starts at 2', async () => { const res = await db.query('SELECT COUNT(*) FROM users'); expect(res.rows[0].count).toBe('2'); });
🔐 Role-Based Context
The supabase-test framework provides powerful tools to simulate authentication contexts during tests, which is particularly useful when testing Row-Level Security (RLS) policies.
Setting Test Context
Use setContext() to simulate different user roles and JWT claims:
db.setContext({ role: 'authenticated', 'jwt.claims.user_id': '123', 'jwt.claims.org_id': 'acme' });
This applies the settings using SET LOCAL statements, ensuring they persist only for the current transaction and maintain proper isolation between tests.
Testing Role-Based Access
describe('authenticated role', () => { beforeEach(async () => { db.setContext({ role: 'authenticated' }); await db.beforeEach(); }); afterEach(() => db.afterEach()); it('runs as authenticated', async () => { const res = await db.query(`SELECT current_setting('role', true) AS role`); expect(res.rows[0].role).toBe('authenticated'); }); });
Database Connection Options
For non-superuser testing, use the connection options described in the options section. The db.connection property allows you to customize the non-privileged user account for your tests.
Use setContext() to simulate Role-Based Access Control (RBAC) during tests. This is useful when testing Row-Level Security (RLS) policies. Your actual server should manage role/user claims via secure tokens (e.g., setting current_setting('jwt.claims.user_id')), but this interface helps emulate those behaviors in test environments.
Common Testing Scenarios
This approach enables testing various access patterns:
- Authenticated vs. anonymous user access
- Per-user data filtering
- Admin privilege bypass behavior
- Custom claim-based restrictions (organization membership, admin status)
Note: While this interface helps simulate RBAC for testing, your production server should manage user/role claims via secure authentication tokens, typically by setting values like
current_setting('jwt.claims.user_id')through proper authentication middleware.
🌱 Seeding System
The second argument to getConnections() is an optional array of SeedAdapter objects:
const { db, teardown } = await getConnections(getConnectionOptions, seedAdapters);
This array lets you fully customize how your test database is seeded. You can compose multiple strategies:
-
seed.sqlfile()– Execute raw.sqlfiles from disk -
seed.fn()– Run JavaScript/TypeScript logic to programmatically insert data -
seed.csv()– Load tabular data from CSV files -
seed.json()– Use in-memory objects as seed data -
seed.pgpm()– Apply a PGPM project or set of packages (compatible with sqitch)
✨ Default Behavior: If no
SeedAdapter[]is passed, pgpm seeding is assumed. This makessupabase-testzero-config for pgpm-based projects.
This composable system allows you to mix-and-match data setup strategies for flexible, realistic, and fast database tests.
Two Seeding Patterns
You can seed data using either approach:
1. Adapter Pattern (setup phase via getConnections)
const { db, teardown } = await getConnections({}, [ seed.json({ 'users': [{ id: 1, name: 'Alice' }] }) ]);
2. Direct Load Methods (runtime via PgTestClient)
await db.loadJson({ 'users': [{ id: 1, name: 'Alice' }] }); await db.loadCsv({ 'users': '/path/to/users.csv' }); await db.loadSql(['/path/to/schema.sql']);
Note:
loadCsv()andloadPpgm()do not apply RLS context (PostgreSQL limitation). UseloadJson()orloadSql()for RLS-aware seeding.
🔌 SQL File Seeding
Adapter Pattern:
const { db, teardown } = await getConnections({}, [ seed.sqlfile(['schema.sql', 'fixtures.sql']) ]);
Direct Load Method:
await db.loadSql(['schema.sql', 'fixtures.sql']);
Full example
import path from 'path'; import { getConnections, seed } from 'supabase-test'; const sql = (f: string) => path.join(__dirname, 'sql', f); let db; let teardown; beforeAll(async () => { ({ db, teardown } = await getConnections({}, [ seed.sqlfile([ sql('schema.sql'), sql('fixtures.sql') ]) ])); }); afterAll(async () => { await teardown(); });
🧠 Programmatic Seeding
Adapter Pattern:
const { db, teardown } = await getConnections({}, [ seed.fn(async ({ pg }) => { await pg.query(`INSERT INTO users (name) VALUES ('Seeded User')`); }) ]);
Direct Load Method:
// Use any PgTestClient method directly await db.query(`INSERT INTO users (name) VALUES ('Seeded User')`);
Full example
import { getConnections, seed } from 'supabase-test'; let db; let teardown; beforeAll(async () => { ({ db, teardown } = await getConnections({}, [ seed.fn(async ({ pg }) => { await pg.query(` INSERT INTO users (name) VALUES ('Seeded User'); `); }) ])); });
🗃️ CSV Seeding
Adapter Pattern:
const { db, teardown } = await getConnections({}, [ seed.csv({ 'users': '/path/to/users.csv', 'posts': '/path/to/posts.csv' }) ]);
Direct Load Method:
await db.loadCsv({ 'users': '/path/to/users.csv', 'posts': '/path/to/posts.csv' });
Note: CSV loading uses PostgreSQL COPY which does not support RLS context.
Full example
You can load tables from CSV files using seed.csv({ ... }). CSV headers must match the table column names exactly. This is useful for loading stable fixture data for integration tests or CI environments.
import path from 'path'; import { getConnections, seed } from 'supabase-test'; const csv = (file: string) => path.resolve(__dirname, '../csv', file); let db; let teardown; beforeAll(async () => { ({ db, teardown } = await getConnections({}, [ // Create schema seed.fn(async ({ pg }) => { await pg.query(` CREATE TABLE users ( id SERIAL PRIMARY KEY, name TEXT NOT NULL ); CREATE TABLE posts ( id SERIAL PRIMARY KEY, user_id INT REFERENCES users(id), content TEXT NOT NULL ); `); }), // Load from CSV seed.csv({ users: csv('users.csv'), posts: csv('posts.csv') }), // Adjust SERIAL sequences to avoid conflicts seed.fn(async ({ pg }) => { await pg.query(`SELECT setval(pg_get_serial_sequence('users', 'id'), (SELECT MAX(id) FROM users));`); await pg.query(`SELECT setval(pg_get_serial_sequence('posts', 'id'), (SELECT MAX(id) FROM posts));`); }) ])); }); afterAll(() => teardown()); it('has loaded rows', async () => { const res = await db.query('SELECT COUNT(*) FROM users'); expect(+res.rows[0].count).toBeGreaterThan(0); });
🗃️ JSON Seeding
Adapter Pattern:
const { db, teardown } = await getConnections({}, [ seed.json({ 'custom.users': [ { id: 1, name: 'Alice' }, { id: 2, name: 'Bob' } ] }) ]);
Direct Load Method:
await db.loadJson({ 'custom.users': [ { id: 1, name: 'Alice' }, { id: 2, name: 'Bob' } ] });
Full example
You can seed tables using in-memory JSON objects. This is useful when you want fast, inline fixtures without managing external files.
import { getConnections, seed } from 'supabase-test'; let db; let teardown; beforeAll(async () => { ({ db, teardown } = await getConnections({}, [ // Create schema seed.fn(async ({ pg }) => { await pg.query(` CREATE SCHEMA custom; CREATE TABLE custom.users ( id SERIAL PRIMARY KEY, name TEXT NOT NULL ); CREATE TABLE custom.posts ( id SERIAL PRIMARY KEY, user_id INT REFERENCES custom.users(id), content TEXT NOT NULL ); `); }), // Seed with in-memory JSON seed.json({ 'custom.users': [ { id: 1, name: 'Alice' }, { id: 2, name: 'Bob' } ], 'custom.posts': [ { id: 1, user_id: 1, content: 'Hello world!' }, { id: 2, user_id: 2, content: 'Graphile is cool!' } ] }), // Fix SERIAL sequences seed.fn(async ({ pg }) => { await pg.query(`SELECT setval(pg_get_serial_sequence('custom.users', 'id'), (SELECT MAX(id) FROM custom.users));`); await pg.query(`SELECT setval(pg_get_serial_sequence('custom.posts', 'id'), (SELECT MAX(id) FROM custom.posts));`); }) ])); }); afterAll(() => teardown()); it('has loaded rows', async () => { const res = await db.query('SELECT COUNT(*) FROM custom.users'); expect(+res.rows[0].count).toBeGreaterThan(0); });
🚀 pgpm Seeding
Zero Configuration (Default):
// pgpm migrate is used automatically const { db, teardown } = await getConnections();
Adapter Pattern (Custom Path):
const { db, teardown } = await getConnections({}, [ seed.pgpm('/path/to/your-pgpm-workspace', true) // with cache ]);
Direct Load Method:
await db.loadPgpm('/path/to/your-pgpm-workspace', true); // with cache
Note: pgpm deployment has its own client handling and does not apply RLS context.
Full example
If your project uses pgpm modules with a precompiled pgpm.plan, you can use supabase-test with zero configuration. Just call getConnections() — and it just works:
import { getConnections } from 'supabase-test'; let db, teardown; beforeAll(async () => { ({ db, teardown } = await getConnections()); // pgpm module is deployed automatically });
pgpm uses Sqitch-compatible syntax with a TypeScript-based migration engine. By default, supabase-test automatically deploys any pgpm module found in the current working directory (process.cwd()).
To specify a custom path to your pgpm module, use seed.pgpm() explicitly:
import path from 'path'; import { getConnections, seed } from 'supabase-test'; const cwd = path.resolve(__dirname, '../path/to/pgpm-workspace'); beforeAll(async () => { ({ db, teardown } = await getConnections({}, [ seed.pgpm(cwd) ])); });
Why PGPM's Approach?
pgpm provides the best of both worlds:
- Sqitch Compatibility: Keep your familiar Sqitch syntax and migration approach
- TypeScript Performance: Our TS-rewritten deployment engine delivers up to 10x faster schema deployments
- Developer Experience: Tight feedback loops with near-instant schema setup for tests
- CI Optimization: Dramatically reduced test suite run times with optimized deployment
By maintaining Sqitch compatibility while supercharging performance, pgpm enables you to keep your existing migration patterns while enjoying the speed benefits of our TypeScript engine.
getConnections Options
This table documents the available options for the getConnections function. The options are passed as a combination of pg and db configuration objects.
db Options (PgTestConnectionOptions)
| Option | Type | Default | Description |
|---|---|---|---|
db.extensions |
string[] |
[] |
Array of PostgreSQL extensions to include in the test database |
db.cwd |
string |
process.cwd() |
Working directory used for PGPM or Sqitch projects |
db.connection.user |
string |
'app_user' |
User for simulating RLS via setContext()
|
db.connection.password |
string |
'app_password' |
Password for RLS test user |
db.connection.role |
string |
'anonymous' |
Default role used during setContext()
|
db.template |
string |
undefined |
Template database used for faster test DB creation |
db.rootDb |
string |
'postgres' |
Root database used for administrative operations (e.g., creating databases) |
db.prefix |
string |
'db-' |
Prefix used when generating test database names |
pg Options (PgConfig)
Environment variables will override these options when available:
-
PGHOST,PGPORT,PGUSER,PGPASSWORD,PGDATABASE
| Option | Type | Default | Description |
|---|---|---|---|
pg.user |
string |
'postgres' |
Superuser for PostgreSQL |
pg.password |
string |
'password' |
Password for the PostgreSQL superuser |
pg.host |
string |
'localhost' |
Hostname for PostgreSQL |
pg.port |
number |
5423 |
Port for PostgreSQL |
pg.database |
string |
'postgres' |
Default database used when connecting initially |
Usage
const { conn, db, teardown } = await getConnections({ pg: { user: 'postgres', password: 'secret' }, db: { extensions: ['uuid-ossp'], cwd: '/path/to/project', connection: { user: 'test_user', password: 'secret', role: 'authenticated' }, template: 'test_template', prefix: 'test_', rootDb: 'postgres' } });
Snapshot Utilities
The supabase-test/utils module provides utilities for sanitizing query results for snapshot testing. These helpers replace dynamic values (IDs, UUIDs, dates, hashes) with stable placeholders, making snapshots deterministic.
import { snapshot } from 'supabase-test/utils'; const result = await db.any('SELECT * FROM users'); expect(snapshot(result)).toMatchSnapshot();
See pgsql-test Snapshot Utilities for the full API reference.
Education and Tutorials
-
🚀 Quickstart: Getting Up and Running Get started with modular databases in minutes. Install prerequisites and deploy your first module.
-
📦 Modular PostgreSQL Development with Database Packages Learn to organize PostgreSQL projects with pgpm workspaces and reusable database modules.
-
✏️ Authoring Database Changes Master the workflow for adding, organizing, and managing database changes with pgpm.
-
🧪 End-to-End PostgreSQL Testing with TypeScript Master end-to-end PostgreSQL testing with ephemeral databases, RLS testing, and CI/CD automation.
-
⚡ Supabase Testing Use TypeScript-first tools to test Supabase projects with realistic RLS, policies, and auth contexts.
-
💧 Drizzle ORM Testing Run full-stack tests with Drizzle ORM, including database setup, teardown, and RLS enforcement.
-
🔧 Troubleshooting Common issues and solutions for pgpm, PostgreSQL, and testing.
Related Constructive Tooling
🧪 Testing
- pgsql-test: 📊 Isolated testing environments with per-test transaction rollbacks—ideal for integration tests, complex migrations, and RLS simulation.
- supabase-test: 🧪 Supabase-native test harness preconfigured for the local Supabase stack—per-test rollbacks, JWT/role context helpers, and CI/GitHub Actions ready.
- graphile-test: 🔐 Authentication mocking for Graphile-focused test helpers and emulating row-level security contexts.
-
pg-query-context: 🔒 Session context injection to add session-local context (e.g.,
SET LOCAL) into queries—ideal for settingrole,jwt.claims, and other session settings.
🧠 Parsing & AST
- pgsql-parser: 🔄 SQL conversion engine that interprets and converts PostgreSQL syntax.
-
libpg-query-node: 🌉 Node.js bindings for
libpg_query, converting SQL into parse trees. - pg-proto-parser: 📦 Protobuf parser for parsing PostgreSQL Protocol Buffers definitions to generate TypeScript interfaces, utility functions, and JSON mappings for enums.
- @pgsql/enums: 🏷️ TypeScript enums for PostgreSQL AST for safe and ergonomic parsing logic.
- @pgsql/types: 📝 Type definitions for PostgreSQL AST nodes in TypeScript.
- @pgsql/utils: 🛠️ AST utilities for constructing and transforming PostgreSQL syntax trees.
🚀 API & Dev Tools
- @constructive-io/graphql-server: ⚡ Express-based API server powered by PostGraphile to expose a secure, scalable GraphQL API over your Postgres database.
- @constructive-io/graphql-explorer: 🔎 Visual API explorer with GraphiQL for browsing across all databases and schemas—useful for debugging, documentation, and API prototyping.
🔁 Streaming & Uploads
- etag-hash: 🏷️ S3-compatible ETags created by streaming and hashing file uploads in chunks.
- etag-stream: 🔄 ETag computation via Node stream transformer during upload or transfer.
- uuid-hash: 🆔 Deterministic UUIDs generated from hashed content, great for deduplication and asset referencing.
- uuid-stream: 🌊 Streaming UUID generation based on piped file content—ideal for upload pipelines.
- @constructive-io/s3-streamer: 📤 Direct S3 streaming for large files with support for metadata injection and content validation.
- @constructive-io/upload-names: 📂 Collision-resistant filenames utility for structured and unique file names for uploads.
🧰 CLI & Codegen
- pgpm: 🖥️ PostgreSQL Package Manager for modular Postgres development. Works with database workspaces, scaffolding, migrations, seeding, and installing database packages.
- @constructive-io/cli: 🖥️ Command-line toolkit for managing Constructive projects—supports database scaffolding, migrations, seeding, code generation, and automation.
- @constructive-io/graphql-codegen: ✨ GraphQL code generation (types, operations, SDK) from schema/endpoint introspection.
-
@constructive-io/query-builder: 🏗️ SQL constructor providing a robust TypeScript-based query builder for dynamic generation of
SELECT,INSERT,UPDATE,DELETE, and stored procedure calls—supports advanced SQL features likeJOIN,GROUP BY, and schema-qualified queries. - @constructive-io/graphql-query: 🧩 Fluent GraphQL builder for PostGraphile schemas. ⚡ Schema-aware via introspection, 🧩 composable and ergonomic for building deeply nested queries.
Credits
🛠 Built by the Constructive team — creators of modular Postgres tooling for secure, composable backends. If you like our work, contribute on GitHub.
Disclaimer
AS DESCRIBED IN THE LICENSES, THE SOFTWARE IS PROVIDED "AS IS", AT YOUR OWN RISK, AND WITHOUT WARRANTIES OF ANY KIND.
No developer or entity involved in creating this software will be liable for any claims or damages whatsoever associated with your use, inability to use, or your interaction with other users of the code, including any direct, indirect, incidental, special, exemplary, punitive or consequential damages, or loss of profits, cryptocurrencies, tokens, or anything else of value.