References
Du, D. & Pardalos, P. M. Handbook of Combinatorial Optimization vol. 4 (Springer Science & Business Media, 1998).
Arora, S. & Barak, B. Computational Complexity: A Modern Approach (Cambridge Univ. Press, 2009).
Kirkpatrick, S., Gelatt Jr, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).
Selman, B. et al. Noise strategies for improving local search. AAAI 94, 337–343 (1994).
Glover, F. & Laguna, M. Tabu Search (Springer, 1998).
Boettcher, S. & Percus, A. G. Optimization with extremal dynamics. Phys. Rev. Lett. 86, 5211-5214 (2001).
Barahona, F. On the computational complexity of Ising spin glass models. J. Phys. A 15, 3241 (1982).
Tiunov, E. S., Ulanov, A. E. & Lvovsky, A. Annealing by simulating the coherent Ising machine. Optics Express 27, 10288–10295 (2019).
King, A. D., Bernoudy, W., King, J., Berkley, A. J. & Lanting, T. Emulating the coherent Ising machine with a mean-field algorithm. Preprint at https://arxiv.org/abs/1806.08422 (2018).
Goto, H., Tatsumura, K. & Dixon, A. R. Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems. Sci. Adv. 5, eaav2372 (2019).
Goto, H. et al. High-performance combinatorial optimization based on classical mechanics. Sci. Adv. 7, eabe7953 (2021).
Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 473, 194–198 (2011).
Inagaki, T. et al. Large-scale Ising spin network based on degenerate optical parametric oscillators. Nat. Photonics 10, 415–419 (2016).
Honjo, T. et al. 100,000-spin coherent Ising machine. Sci. Adv. 7, eabh0952 (2021).
Pierangeli, D., Marcucci, G. & Conti, C. Large-scale photonic Ising machine by spatial light modulation. Phys. Rev. Lett. 122, 213902 (2019).
Cai, F. et al. Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks. Nat. Electron. 3, 409–418 (2020).
Mohseni, N., McMahon, P. L. & Byrnes, T. Ising machines as hardware solvers of combinatorial optimization problems. Nat. Rev. Phys. 4, 363–379 (2022).
Kochenberger, G. et al. The unconstrained binary quadratic programming problem: a survey. J. Combin. Optim. 28, 58–81 (2014).
Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5 (2014).
Gardner, E. Spin glasses with p-spin interactions. Nucl. Phys. B 257, 747–765 (1985).
Karp, R. M. Reducibility among Combinatorial Problems (Springer, 2010).
Wu, F.-Y. The Potts model. Rev. Mod. Phys. 54, 235–268 (1982).
Jensen, T. R. & Toft, B. Graph Coloring Problems (John Wiley & Sons, 2011).
Newman, M. E. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006).
Papadimitriou, C. & Steiglitz, K. Combinatorial Optimization: Algorithms and Complexity (Dover Publications, 1998).
Mézard, M., Parisi, G. & Zecchina, R. Analytic and algorithmic solution of random satisfiability problems. Science 297, 812–815 (2002).
Chermoshentsev, D. A. et al. Polynomial unconstrained binary optimisation inspired by optical simulation. Preprint at https://arxiv.org/abs/2106.13167 (2021).
Bybee, C. et al. Efficient optimization with higher-order Ising machines. Nat. Commun. 14, 6033 (2023).
Kanao, T. & Goto, H. Simulated bifurcation for higher-order cost functions. Appl. Phys. Express 16, 014501 (2022).
Reifenstein, S. et al. Coherent SAT solvers: a tutorial. Adv. Opt. Photonics 15, 385–441 (2023).
Böhm, F., Vaerenbergh, T. V., Verschaffelt, G. & Van der Sande, G. Order-of-magnitude differences in computational performance of analog Ising machines induced by the choice of nonlinearity. Commun. Phys. 4, 149 (2021).
Inagaki, T. et al. A coherent Ising machine for 2000-node optimization problems. Science 354, 603606 (2016).
Schuetz, M. J., Brubaker, J. K. & Katzgraber, H. G. Combinatorial optimization with physics-inspired graph neural networks. Nat. Mach. Intell. 4, 367–377 (2022).
Ushijima-Mwesigwa, H., Negre, C. F. & Mniszewski, S. M. Graph partitioning using quantum annealing on the D-wave system. In Proc. Second International Workshop on Post Moores Era Supercomputing 22–29 (Association for Computing Machinery, 2017).
Walshaw, C. The graph partitioning archive. https://chriswalshaw.co.uk/partition/ (2023).
Karypis, G. & Kumar, V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1998).
Sanders, P. & Schulz, C. Think locally, act globally: highly balanced graph partitioning. In Experimental Algorithms. SEA 2013. Lecture Notes in Computer Science (eds Bonifaci, V., Demetrescu, C. & Marchetti-Spaccamela, A.) 164–175 (Springer, 2013).
Schulz, C. KaHIP. GitHub https://github.com/KaHIP/KaHIP (2025).
Argelich, J., Li, C. M., Manya, F. & Planes, J. Max-SAT 2016. http://www.maxsat.udl.cat/16/benchmarks/index.html (2016).
Molnár, B., Molnár, F., Varga, M., Toroczkai, Z. & Ercsey-Ravasz, M. A continuous-time MaxSAT solver with high analog performance. Nat. Commun. 9, 4864 (2018).
Wu, D., Wang, L. & Zhang, P. Solving statistical mechanics using variational autoregressive networks. Phys. Rev. Lett. 122, 080602 (2019).
Hibat-Allah, M., Inack, E. M., Wiersema, R., Melko, R. G. & Carrasquilla, J. Variational neural annealing. Nat. Mach. Intell. 3, 952–961 (2021).
Holland, P. W., Laskey, K. B. & Leinhardt, S. Stochastic blockmodels: first steps. Soc. Netw. 5, 109–137 (1983).
Karrer, B. & Newman, M. E. Stochastic blockmodels and community structure in networks. Phys. Rev. E 83, 016107 (2011).
Cook, S. A. The complexity of theorem-proving procedures. In Logic, Automata, and Computational Complexity: The Works of Stephen A. Cook (ed Kapron, B. M.) 143-152 (Association for Computing Machinery, 2023).
Mézard, M. et al. Replica symmetry breaking and the nature of the spin glass phase. J. Phys. 45, 843–854 (1984).
Mézard, M., Parisi, G. & Virasoro, M. A. Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications Vol. 9 (World Scientific, 1987).
Bilbro, G. et al. Optimization by mean field annealing. In Advances in Neural Information Processing Systems (ed Touretzky, D.) (Morgan Kaufmann, 1988).
Shen, Z. ZisongShen/Free_Energy_Machine. Zenodo https://doi.org/10.5281/zenodo.14874189 (2025).