Finding the ground state of spin Hamiltonians with reinforcement learning

7 min read Original article ↗

References

  1. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).

    MathSciNet  MATH  Google Scholar 

  2. Barahona, F. On the computational complexity of Ising spin glass models. J. Phys. A 15, 3241–3253 (1982).

    MathSciNet  Google Scholar 

  3. Sherrington, D. & Kirkpatrick, S. Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792–1796 (1975).

    Google Scholar 

  4. Ising, E. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift Phys. 31, 253–258 (1925).

    MATH  Google Scholar 

  5. Onsager, L. Crystal statistics. I. A two-dimensional model with an order–disorder transition. Phys. Rev. 65, 117–149 (1944).

    MathSciNet  MATH  Google Scholar 

  6. Ferdinand, A. E. & Fisher, M. E. Bounded and inhomogeneous Ising models. I. Specific-heat anomaly of a finite lattice. Phys. Rev. 185, 832–846 (1969).

    Google Scholar 

  7. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 1–14 (2014).

    Google Scholar 

  8. Hastings, B. Y. W. K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970).

    MathSciNet  MATH  Google Scholar 

  9. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    MATH  Google Scholar 

  10. Kirkpatrick, S. Optimization by simulated annealing: quantitative studies. J. Stat. Phys. 34, 975–986 (1984).

    MathSciNet  Google Scholar 

  11. van Laarhoven, P. J. M. & Aarts, E. H. L. Simulated Annealing: Theory and Applications (Springer, 1987).

  12. Stander, J. & Silverman, B. W. Temperature schedules for simulated annealing. Stat. Comput. 4, 21–32 (1994).

    Google Scholar 

  13. Heim, B., Rønnow, T. F., Isakov, S. V. & Troyer, M. Quantum versus classical annealing of Ising spin glasses. Science 348, 215–217 (2015).

    MathSciNet  MATH  Google Scholar 

  14. Bounds, D. G. New optimization methods from physics and biology. Nature 329, 215–219 (1987).

    Google Scholar 

  15. Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–475 (2001).

    MathSciNet  MATH  Google Scholar 

  16. Hen, I. & Young, A. P. Solving the graph-isomorphism problem with a quantum annealer. Phys. Rev. A 86, 042310 (2012).

    Google Scholar 

  17. Boixo, S. et al. Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10, 218–224 (2014).

    Google Scholar 

  18. Bian, Z. et al. Discrete optimization using quantum annealing on sparse Ising models. Front. Phys. 2, 1–10 (2014).

    Google Scholar 

  19. Venturelli, D., Marchand, D. J. J. & Rojo, G. Quantum annealing implementation of job-shop scheduling. Preprint at https://arxiv.org/pdf/1506.08479.pdf (2015).

  20. Ray, P., Chakrabarti, B. K. & Chakrabarti, A. Sherrington–Kirkpatrick model in a transverse field: absence of replica symmetry breaking due to quantum fluctuations. Phys. Rev. B 39, 11828–11832 (1989).

    Google Scholar 

  21. Martoňák, R., Santoro, G. E. & Tosatti, E. Quantum annealing by the path-integral Monte Carlo method: the two-dimensional random Ising model. Phys. Rev. B 66, 094203 (2002).

    Google Scholar 

  22. Santoro, G. E. Theory of quantum annealing of an Ising spin glass. Science 295, 2427–2430 (2002).

    Google Scholar 

  23. Finnila, A., Gomez, M., Sebenik, C., Stenson, C. & Doll, J. Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219, 343–348 (1994).

    Google Scholar 

  24. Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355–5363 (1998).

    Google Scholar 

  25. Harris, R. et al. Experimental demonstration of a robust and scalable flux qubit. Phys. Rev. B 81, 134510 (2010).

    Google Scholar 

  26. Harris, R. et al. Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Phys. Rev. B. 82, 024511 (2010).

    Google Scholar 

  27. Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 473, 194–198 (2011).

    Google Scholar 

  28. McGeoch, C. C. & Wang, C. Experimental evaluation of an adiabiatic quantum system for combinatorial optimization. In Proceedings of the ACM International Conference on Computing Frontiers, CF13, Vol. 23, 1–11 (ACM, 2013).

  29. Ikeda, K., Nakamura, Y. & Humble, T. S. Application of quantum annealing to nurse scheduling problem. Sci. Rep. 9, 12837 (2019).

    Google Scholar 

  30. Dickson, N. G. et al. Thermally assisted quantum annealing of a 16-qubit problem. Nat. Commun. 4, 1903 (2013).

    MathSciNet  Google Scholar 

  31. Okada, S., Ohzeki, M. & Tanaka, K. Efficient quantum and simulated annealing of Potts models using a half-hot constraint. J. Phys. Soc. Jpn 89, 094801 (2020).

    Google Scholar 

  32. Battaglia, D. A., Santoro, G. E. & Tosatti, E. Optimization by quantum annealing: lessons from hard satisfiability problems. Phys. Rev. E 71, 066707 (2005).

    Google Scholar 

  33. Tsukamoto, S., Takatsu, M., Matsubara, S. & Tamura, H. An accelerator architecture for combinatorial optimization problems. Fujitsu Sci. Technical J. 53, 8–13 (2017).

    Google Scholar 

  34. Inagaki, T. et al. A coherent Ising machine for 2,000-node optimization problems. Science 354, 603–606 (2016).

    Google Scholar 

  35. Leleu, T., Yamamoto, Y., McMahon, P. L. & Aihara, K. Destabilization of local minima in analog spin systems by correction of amplitude heterogeneity. Phys. Rev. Lett. 122, 040607 (2019).

    Google Scholar 

  36. Tiunov, E. S., Ulanov, A. E. & Lvovsky, A. I. Annealing by simulating the coherent Ising machine. Opt. Express 27, 10288–10295 (2019).

    Google Scholar 

  37. Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/pdf/1411.4028.pdf (2014).

  38. Farhi, E., Goldstone, J., Gutmann, S. & Zhou, L. The quantum approximate optimization algorithm and the Sherrington–Kirkpatrick model at infinite size. Preprint at https://arxiv.org/pdf/1910.08187.pdf (2019).

  39. Sutton, R. & Barto, A. Reinforcement Learning: An Introduction 2nd edn (MIT Press, 2018).

  40. Berner, C. et al. Dota 2 with large scale deep reinforcement learning. Preprint at https://arxiv.org/pdf/1912.06680.pdf (2019).

  41. Zhang, Z. et al. Hierarchical reinforcement learning for multi-agent MOBA Game. Preprint at https://arxiv.org/pdf/1901.08004.pdf (2019).

  42. Vinyals, O. et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575, 350–354 (2019).

    Google Scholar 

  43. Mnih, V. et al. Playing Atari with deep reinforcement learning. Preprint at https://arxiv.org/pdf/1312.5602.pdf (2013).

  44. Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).

    Google Scholar 

  45. Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).

    Google Scholar 

  46. Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi and Go through self-play. Science 362, 1140–1144 (2018).

    MathSciNet  MATH  Google Scholar 

  47. Agostinelli, F., McAleer, S., Shmakov, A. & Baldi, P. Solving the Rubik’s cube with deep reinforcement learning and search. Nat. Mach. Intell. 1, 356–363 (2019).

    Google Scholar 

  48. Akkaya, I. et al. Solving Rubik’s cube with a robot hand. Preprint at https://arxiv.org/pdf/1910.07113.pdf (2019).

  49. Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal policy optimization algorithms. Preprint at https://arxiv.org/pdf/1707.06347.pdf (2017).

  50. Hill, A. et al. Stable Baselines (2018); https://github.com/hill-a/stable-baselines

  51. Brockman, G. et al. OpenAI Gym. Preprint at https://arxiv.org/pdf/1606.01540.pdf (2016).

  52. Schulman, J., Levine, S., Abbeel, P., Jordan, M. & Moritz, P. Trust region policy optimization. In Proceedings of the 32nd International Conference on Machine Learning 1889–1897 (ICML, 2015).

  53. Kakade, S. & Langford, J. Approximately optimal approximate reinforcement learning. In Proceedings of the 19th International Conference on Machine Learning 267–274 (ICML, 2002).

  54. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    Google Scholar 

  55. Aramon, M. et al. Physics-inspired optimization for quadratic unconstrained problems using a Digital Annealer. Front. Phys. 7 (2019); https://doi.org/10.3389/fphy.2019.00048

  56. Bunyk, P. I. et al. Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Trans. Appl. Superconductivity 24, 1–10 (2014).

    Google Scholar 

  57. Liers, F., Jünger, M., Reinelt, G. & Rinaldi, G. in New Optimization Algorithms in Physics Vol. 4, 47–69 (Wiley, 2005).

  58. Jünger, M. Spin glass server; https://informatik.uni-koeln.de/spinglass/

  59. Wang, F. & Landau, D. P. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys.Rev. Lett. 86, 2050–2053 (2001).

    Google Scholar 

Download references