References
Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).
Barahona, F. On the computational complexity of Ising spin glass models. J. Phys. A 15, 3241–3253 (1982).
Sherrington, D. & Kirkpatrick, S. Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792–1796 (1975).
Ising, E. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift Phys. 31, 253–258 (1925).
Onsager, L. Crystal statistics. I. A two-dimensional model with an order–disorder transition. Phys. Rev. 65, 117–149 (1944).
Ferdinand, A. E. & Fisher, M. E. Bounded and inhomogeneous Ising models. I. Specific-heat anomaly of a finite lattice. Phys. Rev. 185, 832–846 (1969).
Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 1–14 (2014).
Hastings, B. Y. W. K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970).
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).
Kirkpatrick, S. Optimization by simulated annealing: quantitative studies. J. Stat. Phys. 34, 975–986 (1984).
van Laarhoven, P. J. M. & Aarts, E. H. L. Simulated Annealing: Theory and Applications (Springer, 1987).
Stander, J. & Silverman, B. W. Temperature schedules for simulated annealing. Stat. Comput. 4, 21–32 (1994).
Heim, B., Rønnow, T. F., Isakov, S. V. & Troyer, M. Quantum versus classical annealing of Ising spin glasses. Science 348, 215–217 (2015).
Bounds, D. G. New optimization methods from physics and biology. Nature 329, 215–219 (1987).
Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–475 (2001).
Hen, I. & Young, A. P. Solving the graph-isomorphism problem with a quantum annealer. Phys. Rev. A 86, 042310 (2012).
Boixo, S. et al. Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10, 218–224 (2014).
Bian, Z. et al. Discrete optimization using quantum annealing on sparse Ising models. Front. Phys. 2, 1–10 (2014).
Venturelli, D., Marchand, D. J. J. & Rojo, G. Quantum annealing implementation of job-shop scheduling. Preprint at https://arxiv.org/pdf/1506.08479.pdf (2015).
Ray, P., Chakrabarti, B. K. & Chakrabarti, A. Sherrington–Kirkpatrick model in a transverse field: absence of replica symmetry breaking due to quantum fluctuations. Phys. Rev. B 39, 11828–11832 (1989).
Martoňák, R., Santoro, G. E. & Tosatti, E. Quantum annealing by the path-integral Monte Carlo method: the two-dimensional random Ising model. Phys. Rev. B 66, 094203 (2002).
Santoro, G. E. Theory of quantum annealing of an Ising spin glass. Science 295, 2427–2430 (2002).
Finnila, A., Gomez, M., Sebenik, C., Stenson, C. & Doll, J. Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219, 343–348 (1994).
Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355–5363 (1998).
Harris, R. et al. Experimental demonstration of a robust and scalable flux qubit. Phys. Rev. B 81, 134510 (2010).
Harris, R. et al. Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Phys. Rev. B. 82, 024511 (2010).
Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 473, 194–198 (2011).
McGeoch, C. C. & Wang, C. Experimental evaluation of an adiabiatic quantum system for combinatorial optimization. In Proceedings of the ACM International Conference on Computing Frontiers, CF ’13, Vol. 23, 1–11 (ACM, 2013).
Ikeda, K., Nakamura, Y. & Humble, T. S. Application of quantum annealing to nurse scheduling problem. Sci. Rep. 9, 12837 (2019).
Dickson, N. G. et al. Thermally assisted quantum annealing of a 16-qubit problem. Nat. Commun. 4, 1903 (2013).
Okada, S., Ohzeki, M. & Tanaka, K. Efficient quantum and simulated annealing of Potts models using a half-hot constraint. J. Phys. Soc. Jpn 89, 094801 (2020).
Battaglia, D. A., Santoro, G. E. & Tosatti, E. Optimization by quantum annealing: lessons from hard satisfiability problems. Phys. Rev. E 71, 066707 (2005).
Tsukamoto, S., Takatsu, M., Matsubara, S. & Tamura, H. An accelerator architecture for combinatorial optimization problems. Fujitsu Sci. Technical J. 53, 8–13 (2017).
Inagaki, T. et al. A coherent Ising machine for 2,000-node optimization problems. Science 354, 603–606 (2016).
Leleu, T., Yamamoto, Y., McMahon, P. L. & Aihara, K. Destabilization of local minima in analog spin systems by correction of amplitude heterogeneity. Phys. Rev. Lett. 122, 040607 (2019).
Tiunov, E. S., Ulanov, A. E. & Lvovsky, A. I. Annealing by simulating the coherent Ising machine. Opt. Express 27, 10288–10295 (2019).
Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/pdf/1411.4028.pdf (2014).
Farhi, E., Goldstone, J., Gutmann, S. & Zhou, L. The quantum approximate optimization algorithm and the Sherrington–Kirkpatrick model at infinite size. Preprint at https://arxiv.org/pdf/1910.08187.pdf (2019).
Sutton, R. & Barto, A. Reinforcement Learning: An Introduction 2nd edn (MIT Press, 2018).
Berner, C. et al. Dota 2 with large scale deep reinforcement learning. Preprint at https://arxiv.org/pdf/1912.06680.pdf (2019).
Zhang, Z. et al. Hierarchical reinforcement learning for multi-agent MOBA Game. Preprint at https://arxiv.org/pdf/1901.08004.pdf (2019).
Vinyals, O. et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575, 350–354 (2019).
Mnih, V. et al. Playing Atari with deep reinforcement learning. Preprint at https://arxiv.org/pdf/1312.5602.pdf (2013).
Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).
Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).
Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi and Go through self-play. Science 362, 1140–1144 (2018).
Agostinelli, F., McAleer, S., Shmakov, A. & Baldi, P. Solving the Rubik’s cube with deep reinforcement learning and search. Nat. Mach. Intell. 1, 356–363 (2019).
Akkaya, I. et al. Solving Rubik’s cube with a robot hand. Preprint at https://arxiv.org/pdf/1910.07113.pdf (2019).
Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal policy optimization algorithms. Preprint at https://arxiv.org/pdf/1707.06347.pdf (2017).
Hill, A. et al. Stable Baselines (2018); https://github.com/hill-a/stable-baselines
Brockman, G. et al. OpenAI Gym. Preprint at https://arxiv.org/pdf/1606.01540.pdf (2016).
Schulman, J., Levine, S., Abbeel, P., Jordan, M. & Moritz, P. Trust region policy optimization. In Proceedings of the 32nd International Conference on Machine Learning 1889–1897 (ICML, 2015).
Kakade, S. & Langford, J. Approximately optimal approximate reinforcement learning. In Proceedings of the 19th International Conference on Machine Learning 267–274 (ICML, 2002).
Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).
Aramon, M. et al. Physics-inspired optimization for quadratic unconstrained problems using a Digital Annealer. Front. Phys. 7 (2019); https://doi.org/10.3389/fphy.2019.00048
Bunyk, P. I. et al. Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Trans. Appl. Superconductivity 24, 1–10 (2014).
Liers, F., Jünger, M., Reinelt, G. & Rinaldi, G. in New Optimization Algorithms in Physics Vol. 4, 47–69 (Wiley, 2005).
Jünger, M. Spin glass server; https://informatik.uni-koeln.de/spinglass/
Wang, F. & Landau, D. P. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys.Rev. Lett. 86, 2050–2053 (2001).