Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study

10 min read Original article ↗
  • Saper, C. B., Chou, T. C. & Elmquist, J. K. The need to feed: homeostatic and hedonic control of eating. Neuron 36, 199–211 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Rossi, M. A. & Stuber, G. D. Overlapping brain circuits for homeostatic and hedonic feeding. Cell Metab. 27, 42–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  • de Araujo, I. E., Schatzker, M. & Small, D. M. Rethinking food reward. Annu. Rev. Psychol. 71, 139–164 (2020).

    Article  PubMed  Google Scholar 

  • de Araujo, I. E. et al. Food reward in the absence of taste receptor signaling. Neuron 57, 930–941 (2008).

    Article  PubMed  Google Scholar 

  • Sclafani, A. & Glendinning, J. I. Flavor preferences conditioned in C57BL/6 mice by intragastric carbohydrate self-infusion. Physiol. Behav. 79, 783–788 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Sclafani, A. & Ackroff, K. Flavor preferences conditioned by intragastric glucose but not fructose or galactose in C57BL/6J mice. Physiol. Behav. 106, 457–461 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, W. et al. A neural circuit for gut-induced reward. Cell 175, 665–678 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthoud, H. R. The vagus nerve, food intake and obesity. Regul. Pept. 149, 15–25 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, Z., Gilbert, E. R. & Liu, D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr. Diabetes Rev. 9, 25–53 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kreymann, B. et al. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2, 1300–1304 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Rindi, G. et al. Characterisation of gastric ghrelin cells in man and other mammals: studies in adult and fetal tissues. Histochem Cell Biol. 117, 511–519 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Berthoud, H. R. Vagal and hormonal gut–brain communication: from satiation to satisfaction. Neurogastroenterol. Motil. 20, 64–72 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L. et al. Sugar metabolism regulates flavor preferences and portal glucose sensing. Front Integr. Neurosci. 12, 57 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berland, C. et al. Dietary lipids as regulators of reward processes: multimodal integration matters. Trends Endocrinol. Metab. 32, 693–705 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Ren, X. et al. Nutrient selection in the absence of taste receptor signaling. J. Neurosci. 30, 8012–8023 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanarajah, S. E. et al. Food intake recruits orosensory and post-ingestive dopaminergic circuits to affect eating desire in humans. Cell Metab. 29, 695–706 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, J. G. et al. Regulation of fat intake in the absence of flavour signalling. J. Physiol. 590, 953–972 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tellez, L. A. et al. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science 341, 800–802 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Little, T. J. et al. Mapping glucose-mediated gut-to-brain signalling pathways in humans. Neuroimage 96, 1–11 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Lassman, D. J. et al. Defining the role of cholecystokinin in the lipid-induced human brain activation matrix. Gastroenterology 138, 1514–1524 (2010).

    Article  PubMed  Google Scholar 

  • Jones, R. B. et al. Functional neuroimaging demonstrates that ghrelin inhibits the central nervous system response to ingested lipid. Gut 61, 1543–1551 (2012).

    Article  CAS  PubMed  Google Scholar 

  • van der Zwaal, E. M. et al. Striatal dopamine D2/3 receptor availability increases after long-term bariatric surgery-induced weight loss. Eur. Neuropsychopharmacol. 26, 1190–1200 (2016).

    Article  PubMed  Google Scholar 

  • ter Horst, K. W. et al. Insulin resistance in obesity can be reliably identified from fasting plasma insulin. Int J. Obes. 39, 1703–1709 (2015).

    Article  Google Scholar 

  • Tschop, M. et al. Circulating ghrelin levels are decreased in human obesity. Diabetes 50, 707–709 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Korek, E. et al. Fasting and postprandial levels of ghrelin, leptin and insulin in lean, obese and anorexic subjects. Prz. Gastroenterol. 8, 383–389 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson, K. M. et al. Prediction of resting energy expenditure from fat-free mass and fat mass. Am. J. Clin. Nutr. 56, 848–856 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Flint, A. et al. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int. J. Obes. Relat. Metab. Disord. 24, 38–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, S. et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl Acad. Sci. USA 89, 5951–5955 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booij, J. et al. Assessment of endogenous dopamine release by methylphenidate challenge using iodine-123 iodobenzamide single-photon emission tomography. Eur. J. Nucl. Med. 24, 674–677 (1997).

    CAS  PubMed  Google Scholar 

  • Berthoud, H. R., Lenard, N. R. & Shin, A. C. Food reward, hyperphagia, and obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R1266–R1277 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolls, E. T. The functions of the orbitofrontal cortex. Brain Cogn. 55, 11–29 (2004).

    Article  PubMed  Google Scholar 

  • Frank, S., Kullmann, S. & Veit, R. Food-related processes in the insular cortex. Front. Hum. Neurosci. 7, 499 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Goetze, O. et al. The effect of macronutrients on gastric volume responses and gastric emptying in humans: a magnetic resonance imaging study. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G11–G17 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, N. et al. Hypothalamic detection of macronutrients via multiple gut–brain pathways. Cell Metab. 33, 676–687 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieger, J. P. Intestinal glucagon-like peptide-1 effects on food intake: physiological relevance and emerging mechanisms. Peptides 131, 170342 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Abbott, C. R. et al. The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal–brainstem–hypothalamic pathway. Brain Res. 1044, 127–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kastin, A. J., Akerstrom, V. & Pan, W. Interactions of glucagon-like peptide-1 (GLP-1) with the blood–brain barrier. J. Mol. Neurosci. 18, 7–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Orskov, C. et al. Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I. Diabetes 45, 832–835 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Dickson, S. L. et al. The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: a new role for mesolimbic GLP-1 receptors. J. Neurosci. 32, 4812–4820 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taha, S. A. & Fields, H. L. Encoding of palatability and appetitive behaviors by distinct neuronal populations in the nucleus accumbens. J. Neurosci. 25, 1193–1202 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldo, B. A. & Kelley, A. E. Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacol. 191, 439–459 (2007).

    Article  CAS  Google Scholar 

  • Berridge, K. C. et al. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 1350, 43–64 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor, E. C. et al. Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding. Neuron 88, 553–564 (2015).

    Article  PubMed  Google Scholar 

  • Lawrence, N. S. et al. Nucleus accumbens response to food cues predicts subsequent snack consumption in women and increased body mass index in those with reduced self-control. Neuroimage 63, 415–422 (2012).

    Article  PubMed  Google Scholar 

  • Tiedemann, L. J. et al. Central insulin modulates food valuation via mesolimbic pathways. Nat. Commun. 8, 16052 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Rodriguez, F. R. et al. An anorexic lipid mediator regulated by feeding. Nature 414, 209–212 (2001).

    Article  Google Scholar 

  • Schwartz, G. J. et al. The lipid messenger OEA links dietary fat intake to satiety. Cell Metab. 8, 281–288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beutler, L. R. et al. Obesity causes selective and long-lasting desensitization of AgRP neurons to dietary fat. eLife 9, e55909 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gropp, E. et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat. Neurosci. 8, 1289–1291 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach, A. et al. Metabolic sensing in AgRP neurons integrates homeostatic state with dopamine signalling in the striatum. eLife 11, e72668 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn, T. M. et al. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat. Neurosci. 1, 271–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351–355 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Su, Z., Alhadeff, A. L. & Betley, J. N. Nutritive, post-ingestive signals are the primary regulators of AgRP neuron activity. Cell Rep. 21, 2724–2736 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small, D. M. et al. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124, 1720–1733 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Hall, K. D. & Kahan, S. Maintenance of lost weight and long-term management of obesity. Med. Clin. North Am. 102, 183–197 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Grove, J. C. R. et al. Dopamine subsystems that track internal states. Nature 608, 374–380 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteban, O. et al. Analysis of task-based functional MRI data preprocessed with fMRIPrep. Nat. Protoc. 15, 2186–2202 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Woolrich, M. W. et al. Temporal autocorrelation in univariate linear modeling of fMRI data. Neuroimage 14, 1370–1386 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Winkler, A. M. et al. Permutation inference for the general linear model. Neuroimage 92, 381–397 (2014).

    Article  PubMed  Google Scholar 

  • Winkler, A. M. et al. Faster permutation inference in brain imaging. Neuroimage 141, 502–516 (2016).

    Article  PubMed  Google Scholar 

  • Winkler, A. M. et al. Non-parametric combination and related permutation tests for neuroimaging. Hum. Brain Mapp. 37, 1486–1511 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Frazier, J. A. et al. Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am. J. Psychiatry 162, 1256–1265 (2005).

    Article  PubMed  Google Scholar 

  • Goldstein, J. M. et al. Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability. Biol. Psychiatry 61, 935–945 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Makris, N. et al. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr. Res. 83, 155–171 (2006).

    Article  PubMed  Google Scholar 

  • Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).

    Article  PubMed  Google Scholar 

  • Cremers, H. R., Wager, T. D. & Yarkoni, T. The relation between statistical power and inference in fMRI. PLoS ONE 12, e0184923 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Adriaanse, S. M. et al. Clinical evaluation of [123I]FP-CIT SPECT scans on the novel brain-dedicated InSPira HD SPECT system: a head-to-head comparison. EJNMMI Res. 8, 85 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolnerhanssen, B. K. et al. Dissociable behavioral, physiological and neural effects of acute glucose and fructose ingestion: a pilot study. PLoS ONE 10, e0130280 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lean, M. E. & Malkova, D. Altered gut and adipose tissue hormones in overweight and obese individuals: cause or consequence? Int. J. Obes. 40, 622–632 (2016).

    Article  CAS  Google Scholar 

  • Thirion, B. et al. Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. Neuroimage 35, 105–120 (2007).

    Article  PubMed  Google Scholar 

  • Grabner, G. et al. Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Med. Image Comput. Comput. Assist. Interv. 9, 58–66 (2006).

    PubMed  Google Scholar