The co-evolution of computational physics and high-performance computing

4 min read Original article ↗

References

  1. De Marco, G., Mainetto, G., Pisani, S. & Savino, P. The early computers of Italy. IEEE Ann. Hist. Comput. 21, 28–36 (1999).

    Article  MathSciNet  Google Scholar 

  2. Von Neumann, J. First draft of a report on the EDVAC. IEEE Ann. Hist. Comput. 15, 27–75 (1993).

    Article  MathSciNet  Google Scholar 

  3. Von Neumann, J. & Goldstine, H. H. Numerical inverting of matrices of high order. Bull. Amer. Math. Soc. 53, 1021–1099 (1947).

    Article  MathSciNet  Google Scholar 

  4. Von Neumann, J. & Richtmyer, R. D. A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232–237 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  5. Charney, J. G., Fjörtoft, R. & Von Neumann, J. Numerical integration of the barotropic vorticity equation. Tellus 2, 237–254 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  6. Metropolis, N., Howlett, J. & Rota, G.-C. (eds) A History of Computing in the Twentieth Century (Academic, 1980).

  7. Adler, B. (ed.) Special Purpose Computers (Academic, 1988).

  8. Battimelli, G., Ciccotti, G. & Greco, P. Computer Meets Theoretical Physics (Springer, 2020).

  9. Fox, G., Williams, R. & Messina, P. Parallel Computing Works (Morgan-Kaufmann, 1994).

  10. Vetter, J. Contemporary High Performance Computing (Chapman and Hall/CRC, 2017).

  11. Eijkhout, V. The Art of HPC Volumes 1–4 https://theartofhpc.com/ (The Art of HPC, 2022).

  12. NVIDIA. NVIDIA H100 Tensor Core GPU. NVIDIA https://www.nvidia.com/en-us/data-center/h100/ (2024).

  13. Google. An in-depth look at Google’s first tensor processing unit (TPU). Google https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu (2017).

  14. ACM. Artifact review and badging. Association for Computing Machinery https://www.acm.org/publications/policies/artifact-review-badging (2020).

  15. Park, S. Direct numerical simulation for lid-driven cavity under various Reynolds numbers in fully staggered grid. Phys. Fluids 35, 115110 (2023).

    Article  ADS  Google Scholar 

  16. Strohmaier, E., Meuer, H. W., Dongarra, J. & Simon, H. D. The TOP500 list and progress in high-performance computing. Computer 48, 42–49 (2015).

    Article  Google Scholar 

  17. Dongarra, J., Heroux, M. A. & Luszczek, P. High-performance conjugate-gradient benchmark: a new metric for ranking high-performance computing systems. Int. J. High Perform. Comput. Appl. 30, 3–10 (2016).

    Article  Google Scholar 

  18. Dongarra, J. & Luszczek, P. HPL-MxP https://hpl-mxp.org/ (2024).

  19. Graph500 https://graph500.org/ (2024).

  20. Green500 https://top500.org/lists/green500/ (2024).

  21. Io500 https://io500.org/ (2024).

  22. NERSC. Al Trivelpiece and the origins of NERSC. National Energy Research Scientific Computing Center https://www.nersc.gov/news-publications/nersc-news/nersc-center-news/nersc-40th-anniversary/al-trivelpiece-and-the-origins-of-nersc/ (2014).

  23. Stone, J. M. & Norman, M. L. ZEUS-2D: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I — the hydrodynamic algorithms and tests. Astrophys. J. Suppl. Ser. 80, 753–790 (1992).

    Article  ADS  Google Scholar 

  24. Barnes, J. E. & Hut, P. Error analysis of a tree code. Astrophys. J. Suppl. Ser. 70, 389–417 (1989).

    Article  ADS  Google Scholar 

  25. Goodale, T. et al. The Cactus framework and toolkit: design and applications. In Vector and Parallel ProcessingVECPAR’2002, 5th International Conference, Lecture Notes in Computer Science 197–227 (Springer, 2003).

  26. Dubey, A. et al. Evolution of FLASH, a multi-physics scientific simulation code for high-performance computing. Int. J. High Perform. Comput. Appl. 28, 225–237 (2013).

    Article  Google Scholar 

  27. Berners-Lee, T. Information management: a proposal. w3 archive https://www.w3.org/History/1989/proposal.html (2024).

  28. CompaniesMarketCap. Largest companies by market cap. CompaniesMarketCap https://companiesmarketcap.com/ (2024).

  29. Boyle, P. et al. QCDOC: a 10 teraflops computer for tightly-coupled calculations. In SC ’04: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing 40 (2004).

  30. NSTMF. National medal of technology and innovation. National Science and Technology Medals Foundation https://nationalmedals.org/laureate/ibm-corporation-2/ (2024).

  31. Bell, G., Bailey, D. H., Dongarra, J., Karp, A. H. & Walsh, K. A look back on 30 years of the Gordon Bell Prize. Int. J. High Perform. Comput. Appl. 31, 469–484 (2017).

    Article  Google Scholar 

  32. Warren, M. & Salmon, J. A parallel hashed Oct-Tree N-body algorithm. In Supercomputing ‘93: Proceedings of the 1993 ACM/IEEE Conference on Supercomputing 12–21 (ACM, 1993).

  33. Schweber, S. & Wächter, M. Complex systems, modelling and simulation. Stud. Hist. Philos. Sci. B 31, 583–609 (2000).

    MathSciNet  Google Scholar 

  34. Keyes, D., Colella, P., Dunning Jr, T. & Gropp, W. A science-based case for large-scale simulation (US DOE, 2003).

  35. Dennard, R. et al. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid State Circuits 9, 256–268 (1974).

    Article  ADS  Google Scholar 

  36. Moore, G. E. Cramming more components onto integrated circuits, reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid State Circuits Soc. Newslett. 11, 33–35 (2006).

    Article  Google Scholar 

  37. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    Article  MathSciNet  Google Scholar 

  38. Chirigati, F. The universe’s expansion in the eyes of computers. Nat. Comput. Sci. 2, 545–547 (2022).

Download references