Bioorthogonal information storage in l-DNA with a high-fidelity mirror-image Pfu DNA polymerase

9 min read Original article ↗
  • Pasteur, L. Researches on the Molecular Asymmetry of Natural Organic Products (Société Chimique de Paris, 1860) Reprint No. 14 (Alembic Club, 1905).

  • Wang, Z., Xu, W., Liu, L. & Zhu, T. F. A synthetic molecular system capable of mirror-image genetic replication and transcription. Nat. Chem. 8, 698–704 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Peplow, M. Mirror-image enzyme copies looking-glass DNA. Nature 533, 303–304 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Peplow, M. A conversation with Ting Zhu. ACS Cent. Sci. 4, 783–784 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaucage, S. L. & Caruthers, M. H. Deoxynucleoside phosphoramidites - a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22, 1859–1862 (1981).

    Article  CAS  Google Scholar 

  • Liu, Y. et al. Synthesis and applications of RNAs with position-selective labelling and mosaic composition. Nature 522, 368–372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrifield, R. B. Solid phase peptide synthesis. 1. Synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963).

    Article  CAS  Google Scholar 

  • Dawson, P., Muir, T., Clark-Lewis, I. & Kent, S. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Yan, L. Z. & Dawson, P. E. Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J. Am. Chem. Soc. 123, 526–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Fang, G.-M. et al. Protein chemical synthesis by ligation of peptide hydrazides. Angew. Chem. Int. Ed. Engl. 50, 7645–7649 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Milton, R., Milton, S. & Kent, S. Total chemical synthesis of a D-enzyme: the enantiomers of HIV-1 protease show reciprocal chiral substrate specificity. Science 256, 1445–1448 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Zawadzke, L. E. & Berg, J. M. A racemic protein. J. Am. Chem. Soc. 114, 4002–4003 (1992).

    Article  CAS  Google Scholar 

  • Weinstock, M. T., Jacobsen, M. T. & Kay, M. S. Synthesis and folding of a mirror-image enzyme reveals ambidextrous chaperone activity. Proc. Natl Acad. Sci. USA 111, 11679–11684 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinogradov, A. A., Evans, E. D. & Pentelute, B. L. Total synthesis and biochemical characterization of mirror image barnase. Chem. Sci. 6, 2997–3002 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, W. et al. Total chemical synthesis of a thermostable enzyme capable of polymerase chain reaction. Cell Discov. 3, 17008 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang, W. et al. Mirror-image polymerase chain reaction. Cell Discov. 3, 17037 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pech, A. et al. A thermostable d-polymerase for mirror-image PCR. Nucleic Acids Res. 45, 3997–4005 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartrampf, N. et al. Synthesis of proteins by automated flow chemistry. Science 368, 980–987 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Wang, M. et al. Mirror-image gene transcription and reverse transcription. Chem 5, 848–857 (2019).

    Article  CAS  Google Scholar 

  • Lamarche, B. J., Kumar, S. & Tsai, M. D. ASFV DNA polymerase X is extremely error-prone under diverse assay conditions and within multiple DNA sequence contexts. Biochemistry 45, 14826–14833 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Ling, H., Boudsocq, F., Woodgate, R. & Yang, W. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107, 91–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Boudsocq, F., Iwai, S., Hanaoka, F. & Woodgate, R. Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): an archaeal DinB-like DNA polymerase with lesion-bypass properties akin to eukaryotic polη. Nucleic Acids Res. 29, 4607–4616 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cline, J., Braman, J. C. & Hogrefe, H. H. PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res. 24, 3546–3551 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, S. et al. Practical chemical synthesis of atypical ubiquitin chains by using an isopeptide-linked Ub isomer. Angew. Chem. Int. Ed. Engl. 56, 13333–13337 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Sun, H. & Brik, A. The journey for the total chemical synthesis of a 53 kDa protein. Acc. Chem. Res. 52, 3361–3371 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Hansen, C. J., Wu, L., Fox, J. D., Arezi, B. & Hogrefe, H. H. Engineered split in Pfu DNA polymerase fingers domain improves incorporation of nucleotide ɣ-phosphate derivative. Nucleic Acids Res. 39, 1801–1810 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Wan, Q. & Danishefsky, S. J. Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew. Chem. Int. Ed. Engl. 46, 9248–9252 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Hyde, C., Johnson, T., Owen, D., Quibell, M. & Sheppard, R. Some ‘difficult sequences’ made easy. Int. J. Pept. Protein Res. 43, 431–440 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Johnson, T., Quibell, M. & Sheppard, R. C. N,O-bisFmoc derivatives of N-(2-hydroxy-4-methoxybenzyl)-amino acids: useful intermediates in peptide synthesis. J. Pept. Sci. 1, 11–25 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Zheng, J. S. et al. Robust chemical synthesis of membrane proteins through a general method of removable backbone modification. J. Am. Chem. Soc. 138, 3553–3561 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen, M. T. et al. A helping hand to overcome solubility challenges in chemical protein synthesis. J. Am. Chem. Soc. 138, 11775–11782 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wöhr, T. et al. Pseudo-prolines as a solubilizing, structure-disrupting protection technique in peptide synthesis. J. Am. Chem. Soc. 118, 9218–9227 (1996).

    Article  Google Scholar 

  • Pascal Dumy, M. K., Ryan, D. E., Rohwedder, B., Wöhr, T. & Mutter, M. Pseudo-prolines as a molecular hinge: reversible induction of cis amide bonds into peptide backbones. J. Am. Chem. Soc. 119, 918–925 (1997).

    Article  Google Scholar 

  • Sohma, Y. et al. ‘O-Acyl isopeptide method’ for the efficient synthesis of difficult sequence-containing peptides: use of ‘O-acyl isodipeptide unit’. Tetrahedron Lett. 47, 3013–3017 (2006).

    Article  CAS  Google Scholar 

  • Coin, I. The depsipeptide method for solid-phase synthesis of difficult peptides. J. Pept. Sci. 16, 223–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Ellington, A. & Cherry, J. M. Characteristics of amino acids. Curr. Protoc. Mol. Biol. 33, A.1C.1–A.1C.12 (2001).

  • Fang, G. M., Wang, J. X. & Liu, L. Convergent chemical synthesis of proteins by ligation of peptide hydrazides. Angew. Chem. Int. Ed. Engl. 51, 10347–10350 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Zheng, J. S., Tang, S., Qi, Y. K., Wang, Z. P. & Liu, L. Chemical synthesis of proteins using peptide hydrazides as thioester surrogates. Nat. Protoc. 8, 2483–2495 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Xiong, A. S. et al. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res. 32, e98 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, X. & Zhu, T. F. Sequencing mirror-image DNA chemically. Cell Chem. Biol. 25, 1151–1156 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Nakamaye, K. L., Gish, G., Eckstein, F. & Vosberg, H.-P. Direct sequencing of polymerase chain reaction amplified DNA fragments through the incorporation of deoxynucleoside α-thiotriphosphates. Nucleic Acids Res. 16, 9947–9959 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gish, G. & Eckstein, F. DNA and RNA sequence determination based on phosphorothioate chemistry. Science 240, 1520–1522 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B. et al. Ligation of soluble but unreactive peptide segments in the chemical synthesis of Haemophilus influenzae DNA ligase. Angew. Chem. Int. Ed. Engl. 58, 12231–12237 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Weidmann, J., Schnolzer, M., Dawson, P. E. & Hoheisel, J. D. Copying life: synthesis of an enzymatically active mirror-image DNA-ligase made of D-amino acids. Cell Chem. Biol. 26, 645–651 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Tiessen, A., Perez-Rodriguez, P. & Delaye-Arredondo, L. J. Mathematical modeling and comparison of protein size distribution in different plant, animal, fungal and microbial species reveals a negative correlation between protein size and protein number, thus providing insight into the evolution of proteomes. BMC Res. Notes 5, 85 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B. C. et al. Chemical synthesis of proteins containing 300 amino acids. Chem. Res. Chin. Univ. 36, 733–747 (2020).

    Article  CAS  Google Scholar 

  • Cozens, C., Pinheiro, V. B., Vaisman, A., Woodgate, R. & Holliger, P. A short adaptive path from DNA to RNA polymerases. Proc. Natl Acad. Sci. USA 109, 8067–8072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Church, G. M., Gao, Y. & Kosuri, S. Next-generation digital information storage in DNA. Science 337, 1628 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Goldman, N. et al. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 494, 77–80 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceze, L., Nivala, J. & Strauss, K. Molecular digital data storage using DNA. Nat. Rev. Genet. 20, 456–466 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Matange, K., Tuck, J. M. & Keung, A. J. DNA stability: a central design consideration for DNA data storage systems. Nat. Commun. 12, 1358 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paunescu, D., Fuhrer, R. & Grass, R. N. Protection and deprotection of DNA–high-temperature stability of nucleic acid barcodes for polymer labeling. Angew. Chem. Int. Ed. Engl. 52, 4269–4272 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Koch, J. et al. A DNA-of-things storage architecture to create materials with embedded memory. Nat. Biotechnol. 38, 39–43 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Wade, D. et al. All-D amino acid-containing channel-forming antibiotic peptides. Proc. Natl Acad. Sci. USA 87, 4761–4765 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caton-Williams, J., Hoxhaj, R., Fiaz, B. & Huang, Z. Use of a novel 5′-regioselective phosphitylating reagent for one-pot synthesis of nucleoside 5′-triphosphates from unprotected nucleosides. Curr. Protoc. Nucleic Acid Chem. 52, 1.30.1–1.30.21 (2013).

    Article  Google Scholar 

  • Huang, Y.-C. et al. Facile synthesis of C-terminal peptide hydrazide and thioester of NY-ESO-1 (A39-A68) from an Fmoc-hydrazine 2-chlorotrityl chloride resin. Tetrahedron 70, 2951–2955 (2014).

    Article  CAS  Google Scholar 

  • Huang, Y. C. et al. Synthesis of l- and d-ubiquitin by one-pot ligation and metal-free desulfurization. Chemistry 22, 7623–7628 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Maity, S. K., Jbara, M., Laps, S. & Brik, A. Efficient palladium-assisted one-pot deprotection of (acetamidomethyl)cysteine following native chemical ligation and/or desulfurization to expedite chemical protein synthesis. Angew. Chem. Int. Ed. Engl. 55, 8108–8112 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Burley, S. K. & Petsko, G. A. Weakly polar interactions in proteins. Adv. Protein Chem. 39, 125–189 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Lundberg, K. S. et al. High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108, 1–6 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods 9, 811–814 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar