Earliest evidence of making fire

11 min read Original article ↗
  • Perles, C. La Prehistoire du Feu (Masson, 1977).

  • Roebroeks, W. & Villa, P. On the earliest evidence for habitual use of fire in Europe. Proc. Natl Acad. Sci. USA 108, 5209–5214 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Wrangham, R. Control of fire in the Paleolithic: evaluating the cooking hypothesis. Curr. Anthrop. 58, S303–S313 (2017).

    Article  Google Scholar 

  • Gowlett J. A. J. in Sur le chemin de l’humanité. Via humanitatis: les grandes étapes de l’évolution morphologique et culturelle de l’Homme: émergence de l’être humain (ed. de Lumley, H.) 171–197 (Académie Pontificale des Sciences/CNRS, 2015).

  • James, S. R. Hominid use of fire in the Lower and Middle Pleistocene: s review of the evidence. Curr. Anthropol. 30, 1–26 (1989).

    Article  Google Scholar 

  • Sandgathe, D. M. et al. Timing of the appearance of habitual fire use. Proc. Natl Acad. Sci. USA 108, E298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg, P., Miller, C. E. & Mentzer, S. M. Recognizing fire in the Paleolithic archaeological record. Curr. Anthrop. 58, S175–S190 (2017).

    Article  Google Scholar 

  • Gowlett, J. A. J. et al. Early archaeological sites, hominid remains and traces of fire from Chesowanja, Kenya. Nature 294, 125–129 (1981).

    Article  CAS  PubMed  ADS  Google Scholar 

  • Bellomo, R. V. Methods of determining early hominid behavioural activities associated with the controlled use of fire at FxJj 20 Main, Koobi Fora, Kenya. J. Hum. Evol. 27, 173–195 (1994).

    Article  Google Scholar 

  • Hlubik, S. et al. Researching the Nature of fire at 1.5 Mya on the site of FxJj20 AB, Koobi Fora, Kenya, using high-resolution spatial analysis and FTIR spectrometry. Curr. Anthrop. 58, S243–S257 (2017).

    Article  Google Scholar 

  • Brain, C. K. & Sillen, A. Evidence from the Swartkrans cave for the earliest use of fire. Nature 336, 464–466 (1988).

    Article  CAS  ADS  Google Scholar 

  • Berna, F. et al. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proc. Natl Acad. Sci. USA 109, E1215–E1220 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Alperson-Afil, N., Richter, D. & Goren-Inbar, N. Phantom hearths and the use of fire at Gesher Benot Ya’aqov, Israel. PaleoAnthrop. 2007, 1–15 (2007).

    Google Scholar 

  • Chazan, M. Toward a long prehistory of Fire. Curr. Anthrop. 58, S351–S359 (2017).

    Article  Google Scholar 

  • Sorensen, A. C. On the relationship between climate and Neandertal fire use during the Last Glacial in south-west France. Quat. Int. 436A, 114–128 (2017).

    Article  Google Scholar 

  • Ravon, A.-L. in Crossing the Human Threshold. Dynamic Transformation and Persistent Places during the Middle Pleistocene (eds Pope, M. et al.) 106–122 (Routledge, 2018).

  • Sanz, M. et al. Early evidence of fire in south-western Europe: the Acheulean site of Gruta da Aroeira (Torres Novas, Portugal). Sci. Rep. 10, 12053 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • de Lumley, H. Terra Amata, Nice, Alpes-Maritimes, France, Tome V: Comportement et Mode de Vie des Chasseurs Acheuléens de Terra Amata (Editions CNRS, 2016).

  • Ollé, A. et al. The Middle Pleistocene site of La Cansaladeta (Tarragona, Spain): stratigraphic and archaeological succession. Quat. Int. 393, 137–157 (2016).

    Article  Google Scholar 

  • Stepanchuk, V. N. & Moigne, A.-M. MIS 11-locality of Medzhibozh, Ukraine: Archaeological and paleozoological evidence. Quat. Int. 409, 241–254 (2016).

    Article  Google Scholar 

  • Gowlett, J. A. J. et al. Beeches Pit – archaeology, assemblage dynamics and early fire history of a Middle Pleistocene site in East Anglia, UK. Eurasian Prehist. 3, 3–38 (2005).

    Google Scholar 

  • Sorensen, A. C., Claude, E. & Soressi, M. Neandertal fire-making technology inferred from microwear analysis. Sci. Rep. 8, 10065 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Ashton, N. M., Lewis, S. G. & Parfitt, S. A. Excavations at Barnham, Suffolk, 1989-94 (British Museum, 1998).

  • Ashton, N. M. et al. Handaxe and non-handaxe assemblages during Marine Isotope Stage 11 in northern Europe: Recent investigations at Barnham, Suffolk, UK. J. Quat. Sci. 31, 837–843 (2016).

    Article  Google Scholar 

  • Preece, R. C. & Penkman, K. E. H. New faunal analyses and amino acid dating of the Lower Palaeolithic site at East Farm, Barnham, Suffolk. Proc. Geol. Assoc. 116, 363–377 (2005).

    Article  Google Scholar 

  • Voinchet, P. et al. New chronological data (ESR and ESR/U-series) for the earliest Acheulean sites of northwestern Europe. J. Quat. Sci. 30, 610–622 (2015).

    Article  Google Scholar 

  • Brittingham, A. et al. Geochemical evidence for the control of fire by Middle Palaeolithic hominins. Sci. Rep. 9, 15368 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Denis, E. H. et al. Polycyclic aromatic hydrocarbons (PAHs) in lake sediments record historic fire events: validation using HPLC-fluorescence detection. Org. Geochem. 45, 7–17 (2012).

    Article  CAS  ADS  Google Scholar 

  • Hough, W. Fire-making Apparatus in the United States National Museum (United States Government Printing Office, 1928); https://archive.org/details/firemakingappara0000walt.

  • Stapert, D. & Johansen, L. Flint and pyrite: making fire in the Stone Age. Antiq. 73, 765–777 (1999).

    Article  Google Scholar 

  • Sorensen, A. C., Roebroeks, W. & Van Gijn, A.-L. Fire production in the deep past: the expedient strike-a-light model. J. Archaeol. Sci. 42, 476–486 (2014).

    Article  Google Scholar 

  • Jeans, C. V., Turchyn, A. V. & Hu, X.-F. Sulfur isotope patterns of iron sulfide and barite nodules in the Upper Cretaceous Chalk of England and their regional significance in the origin of coloured chalks. Acta Geologica Polonica 66, 227–256 (2016).

    Article  CAS  ADS  Google Scholar 

  • Bristow, C. R. 1990. Geology of the Country around Bury St Edmunds. Memoir British Geological Survey, Sheet 189 (England and Wales) (British Geological Survey, 1990).

  • Ander, E. L. et al. Baseline Report Series 13: The Great Ouse Chalk aquifer, East Anglia. Commissioned Report CR/04/236N (British Geological Survey, 2004).

  • Preece, R. C. et al. Terrestrial environments during MIS 11: evidence from the Palaeolithic site at West Stow, Suffolk, UK. Quat. Sci. Rev. 26, 1236–1300 (2007).

    Article  ADS  Google Scholar 

  • Wiessner, P. W. Embers of society: Firelight talk among the Ju/‘hoansi Bushmen. Proc. Natl Acad. Sci. USA 111, 14027–14035 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Gingerich, P. D. Pattern and rate in the Plio-Pleistocene evolution of modern human brain size. Sci. Rep. 12, 11216 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Dunbar, R. I. M. The social brain hypothesis. Evol. Anthrop. 6, 178–190 (1998).

    Article  Google Scholar 

  • Villa, P. & Lenoir, M. in The Evolution of Hominin Diets (eds Hublin, J-J. & Richards, M. P.) 59–85 (Springer, 2009).

  • Locht, J.-L. et al. Une occupation de la phase ancienne du Paléolithique moyen à Therdonne (Oise): chronostratigraphie, production de pointes Levallois et réduction des nucleus. Gallia Préhistoire 52, 1–32 (2010).

    Article  Google Scholar 

  • Malinsky-Buller, A. The muddle in the Middle Pleistocene: the Lower–Middle Paleolithic transition from the Levantine perspective. J. World Prehist. 29, 1–78 (2016).

    Article  Google Scholar 

  • Rots, V. Insights into early Middle Palaeolithic tool use and hafting in Western Europe. The functional analysis of level {IIa} of the early Middle Palaeolithic site of Biache-Saint-Vaast (France). J. Archaeol. Sci. 40, 497–506 (2013).

    Article  Google Scholar 

  • Mazza, P. et al. A new Palaeolithic discovery: tar-hafted stone tools in a European Mid-Pleistocene bone-bearing bed. J. Archaeol. Sci. 33, 1310–1318 (2006).

    Article  Google Scholar 

  • Parfitt, S. A. & Bello, S. M. Bone tools, carnivore chewing and heavy percussion: assessing conflicting interpretations of Lower and Upper Palaeolithic bone assemblages. R. Soc. Open Sci. 11, 231163 (2024).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Milks, A. et al. A double-pointed wooden throwing stick from Schöningen, Germany: results and new insights from a multianalytical study. PLoS ONE 18, e0287719 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mentzer, S. M. Microarchaeological approaches to the identification and interpretation of combustion features in prehistoric archaeological sites. J. Archaeol. Meth. Theory 21, 616–668 (2014).

    Article  Google Scholar 

  • Barbetti, M. Traces of fire in the archaeological record, before one million years ago? J. Hum. Evol. 15, 771–781 (1986).

    Article  Google Scholar 

  • Thieme, H. in The Hominid Individual in Context: Archaeological Investigations of Lower and Middle Palaeolithic Landscapes, Locales and Artefacts (eds Gamble, C. & Porr, M.) 115–132 (Routledge, 2005).

  • Stahlschmidt, M. C. et al. On the evidence for human use and control of fire at Schöningen. J. Hum. Evol. 89, 181–201 (2015).

    Article  PubMed  Google Scholar 

  • Stoops, G. Guidelines for Analysis and Description of Soil and Regolith Thin Sections (Soil Science Society of America, 2003).

  • Stoops, G. Guidelines for Analysis and Description of Soil and Regolith Thin Sections (Wiley, 2021).

  • Herries, A. I. & Fisher, E. C. Multidimensional GIS modelling of magnetic mineralogy as a proxy for fire use and spatial patterning: evidence from the Middle Stone Age bearing sea cave of Pinnacle Point 13B (Western Cape, South Africa). J. Hum. Evol. 59, 306–320 (2010).

    Article  PubMed  Google Scholar 

  • Herrejón Lagunilla, Á et al. An experimental approach to the preservation potential of magnetic signatures in anthropogenic fires. PLoS ONE 14, e0221592 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Oldfield, F. & Crowther, J. Establishing fire incidence in temperate soils using magnetic measurements. Palaeogeog. Palaeoclim. Palaeoecol. 249, 362–369 (2007).

    Article  ADS  Google Scholar 

  • Gedye, S. J. et al. The use of mineral magnetism in the reconstruction of fire history: a case study from Lago di Origlio, Swiss Alps. Palaeogeog. Palaeoclim. Palaeoecol. 164, 101–110 (2000).

    Article  ADS  Google Scholar 

  • Dearing, J. A. in Environmental Magnetism: a Practical Guide (eds Walden, J. et al.) 25–62 (Quaternary Research Association, 1999).

  • Maher, B. A. The magnetic properties of some synthetic submicron magnetites. Geophys. J. R. Astron. Soc. 94, 83–96 (1988).

    Article  CAS  Google Scholar 

  • Maki, D., Homburg, J. A. & Brosowske, S. D. Thermally activated mineralogical transformations in archaeological hearths: inversion from maghemite γFe2O4 phase to haematite αFe2O4 form. Archaeolog. Prospec. 13, 207–227 (2006).

    Article  Google Scholar 

  • Liu, Q. et al. Environmental magnetism: principles and applications. Rev. Geophys. 50, 2–50 (2012).

    Article  Google Scholar 

  • Thompson, R. & Oldfield, F. Environmental Magnetism (Allen and Unwin, 1986).

  • Linford, N. T. & Canti, M. G. Geophysical evidence for fires in antiquity: preliminary results from an experimental study. Paper given at the EGS XXIV General Assembly in The Hague, April 1999. Archaeol. Prospec. 8, 211–225 (2001).

    Article  Google Scholar 

  • Ketterings, Q. M., Bigham, J. M. & Laperche, V. Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. Soil Sci. Soc. Am. J. 64, 1108–1117 (2000).

    Article  CAS  ADS  Google Scholar 

  • Pulley, S., Lagesse, J. & Ellery, W. The mineral magnetic signatures of fire in the Kromrivier wetland, South Africa. J. Soils Sed. 17, 1170–1181 (2017).

    Article  CAS  Google Scholar 

  • Walden, J., Oldfield, F. & Smith, J. P. (eds) Environmental Magnetism: a Practical Guide (Quaternary Research Association, 1999).

  • Worm, H. U. On the superparamagnetic–stable single domain transition for magnetite, and frequency dependence of susceptibility. Geophys. J. Int. 133, 201–206 (1988).

    Article  ADS  Google Scholar 

  • Blundell, A. et al. Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales. Earth Sci. Rev. 95, 158–188 (2009).

    Article  ADS  Google Scholar 

  • Snape, L. & Church, M. J. in Wild Things 2.0: Further Advances in Palaeolithic and Mesolithic Research (eds Walker, J. & Clinnick, D.) 55–80 (Oxbow Books, 2019).

  • Karp, A. T. et al. Fire distinguishers: refined interpretations of polycyclic aromatic hydrocarbons for paleo-applications. Geochim. Cosmochim. Acta 289, 93–113 (2020).

    Article  CAS  ADS  Google Scholar 

  • Song, Y. et al. Distribution of pyrolytic PAHs across the Triassic–Jurassic boundary in the Sichuan Basin, southwestern China: evidence of wildfire outside the Central Atlantic Magmatic Province. Earth Sci. Rev. 201, 102970 (2020).

    Article  CAS  Google Scholar 

  • Hytönen, K. et al. Gas–particle distribution of PAHs in wood combustion emission determined with annular denuders, filter, and polyurethane foam adsorbent. Aerosol Sci. Tech. 43, 442–454 (2009).

    Article  ADS  Google Scholar 

  • McDonald, J. D. et al. Fine particle and gaseous emission rates from residential wood combustion. Environ. Sci. Tech. 34, 2080–2091 (2000).

    Article  CAS  Google Scholar 

  • Hoare, S. Assessing the function of Palaeolithic hearths: experiments on intensity of luminosity and radiative heat outputs from different fuel sources. J. Paleol. Archaeol. 3, 537–565 (2020).

    Article  ADS  Google Scholar 

  • Argiriadis, E. et al. Lake sediment fecal and biomass burning biomarkers provide direct evidence for prehistoric human-lit fires in New Zealand. Sci. Rep. 8, 12113 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Campos, I. & Abrantes, N. Forest fires as drivers of contamination of polycyclic aromatic hydrocarbons to the terrestrial and aquatic ecosystems. Curr. Opin. Environ. Sci. Health 24, 100293 (2021).

    Google Scholar 

  • Sojinu, O. S., Sonibare, O. O. & Zeng, E. Y. Concentrations of polycyclic aromatic hydrocarbons in soils of a mangrove forest affected by forest fire. Toxicolog. Environ. Chem. 93, 450–461 (2011).

    Article  CAS  Google Scholar 

  • Yunker, M. B. et al. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 33, 489–515 (2002).

    Article  CAS  ADS  Google Scholar 

  • Faboya, O. L. et al. Impact of forest fires on polycyclic aromatic hydrocarbon concentrations and stable carbon isotope compositions in burnt soils from tropical forest, Nigeria. Sci. Afr. 8, e00331 (2020).

    CAS  Google Scholar 

  • Weiner, S. Microarchaeology-Beyond the Visible Archaeological Record (Cambridge Univ. Press, 2010).

  • Madejova, J. & Komadel, P. Baseline studies of the Clay Mineral Society source clays: infrared methods. Clays Clay Min. 49, 410–432 (2001).

    Article  CAS  ADS  Google Scholar 

  • Berna, F. et al. Sediments exposed to high temperatures: reconstructing pyrotechnological processes in Late Bronze and Iron Age strata at Tel dor (Israel). J. Archaeol. Sci. 34, 358–373 (2007).

    Article  Google Scholar 

  • Saikia, B. J. & Parthasarathy, G. Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 1, 206–210 (2010).

    Article  CAS  Google Scholar 

  • Bridgland, D. R. Clast Lithological Analysis. Technical Guide No. 3 (Quaternary Research Association, 1986).

  • Gale, S. J. & Hoare, P. G. Quaternary Sediments: Petrographic Methods for the Study of Unlithified Rocks (Blackburn, 2011).