Millimetre-scale bioresorbable optoelectronic systems for electrotherapy

13 min read Original article ↗

Data availability

The data supporting the results of this study are present in the paper and Supplementary InformationSource data are provided with this paper.

Code availability

The code for connecting to the device via BLE, recording and analysing ECG data in real time, and configuring the pacing parameters in a closed-loop system is available on Code Ocean at https://codeocean.com/capsule/9406347/tree/v1 (ref. 49).

References

  1. Choi, Y. S. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228–1238 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Zhang, Y. et al. Advances in bioresorbable materials and electronics. Chem. Rev. 123, 11722–11773 (2023).

    Article  PubMed  CAS  Google Scholar 

  3. Choi, Y. S. et al. A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 376, 1006–1012 (2022).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lumia, F. J. & Rios, J. C. Temporary transvenous pacemaker therapy: an analysis of complications. Chest 64, 604–608 (1973).

    Article  PubMed  CAS  Google Scholar 

  5. Wood, M. A. & Ellenbogen, K. A. Cardiac pacemakers from the patient’s perspective. Circulation 105, 2136–2138 (2002).

    Article  PubMed  Google Scholar 

  6. Bar-Cohen, Y. et al. Minimally invasive implantation of a micropacemaker into the pericardial space. Circ. Arrhythm. Electrophysiol. 11, e006307 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhao, J. et al. Permanent epicardial pacing in neonates and infants less than 1 year old: 12-year experience at a single center. Transl. Pediatr. 11, 825–833 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wildbolz, M., Dave, H., Weber, R., Gass, M. & Balmer, C. Pacemaker implantation in neonates and infants: favorable outcomes with epicardial pacing systems. Pediatr. Cardiol. 41, 910–917 (2020).

    Article  PubMed  Google Scholar 

  9. Wilhelm, M. J. et al. Cardiac pacemaker infection: surgical management with and without extracorporeal circulation. Ann. Thorac. Surg. 64, 1707–1712 (1997).

    Article  PubMed  CAS  Google Scholar 

  10. Donovan, K. D. & Lee, K. Y. Indications for and complications of temporary transvenous cardiac pacing. Anaesth. Intensive Care 13, 63–70 (1985).

    Article  PubMed  CAS  Google Scholar 

  11. BRAUN, M. U. et al. Percutaneous lead implantation connected to an external device in stimulation-dependent patients with systemic infection—a prospective and controlled study. Pacing Clin. Electrophysiol. 29, 875–879 (2006).

    Article  ADS  PubMed  Google Scholar 

  12. Ouyang, H. et al. Symbiotic cardiac pacemaker. Nat. Commun. 10, 1821 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Lyu, H. et al. Synchronized biventricular heart pacing in a closed-chest porcine model based on wirelessly powered leadless pacemakers. Sci. Rep. 10, 2067 (2020).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ho, J. S. et al. Wireless power transfer to deep-tissue microimplants. Proc. Natl Acad. Sci. USA 111, 7974–7979 (2014).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wang, S. et al. A self-assembled implantable microtubular pacemaker for wireless cardiac electrotherapy. Sci. Adv. 9, eadj0540 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Prominski, A. et al. Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues. Nat. Mater. 21, 647–655 (2022).

    Article  ADS  PubMed  CAS  Google Scholar 

  17. Liu, Z. et al. Photoelectric cardiac pacing by flexible and degradable amorphous Si radial junction stimulators. Adv. Healthc. Mater. 9, 1901342 (2020).

    Article  CAS  Google Scholar 

  18. Wang, L. et al. A fully biodegradable and self-electrified device for neuroregenerative medicine. Sci. Adv. 6, eabc6686 (2020).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhang, Y. et al. Self-powered, light-controlled, bioresorbable platforms for programmed drug delivery. Proc. Natl. Acad. Sci. USA 120, e2217734120 (2023).

  20. Huang, I. et al. High performance dual-electrolyte magnesium–iodine batteries that can harmlessly resorb in the environment or in the body. Energy Environ. Sci. 15, 4095–4108 (2022).

    Article  CAS  Google Scholar 

  21. Won, S. M. et al. Natural wax for transient electronics. Adv. Funct. Mater. 28, 1801819 (2018).

    Article  Google Scholar 

  22. Choi, Y. S. et al. Biodegradable polyanhydrides as encapsulation layers for transient electronics. Adv. Funct. Mater. 30, 2000941 (2020).

    Article  CAS  Google Scholar 

  23. Song, G. Control of biodegradation of biocompatable magnesium alloys. Corros. Sci. 49, 1696–1701 (2007).

    Article  CAS  Google Scholar 

  24. Schauer, A. et al. Biocompatibility and degradation behavior of molybdenum in an in vivo rat model. Materials 14, 7776 (2021).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yin, L. et al. Dissolvable metals for transient electronics. Adv. Funct. Mater. 24, 645–658 (2014).

    Article  CAS  Google Scholar 

  26. Yu, K. J. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15, 782–791 (2016).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kang, S.-K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  28. Li, G. et al. Flexible transient phototransistors by use of wafer‐compatible transferred silicon nanomembranes. Small 14, e1802985 (2018).

    Article  ADS  PubMed  Google Scholar 

  29. Li, G. et al. Silicon nanomembrane phototransistor flipped with multifunctional sensors toward smart digital dust. Sci. Adv. 6, eaaz6511 (2020).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  30. López Ayerbe, J. et al. Temporary pacemakers: current use and complications. Rev. Esp. Cardiol. Engl. Ed. 57, 1045–1052 (2004).

    Article  Google Scholar 

  31. Yu, L., Nina-Paravecino, F., Kaeli, D. & Fang, Q. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms. J. Biomed. Opt. 23, 1 (2018).

    Article  PubMed  Google Scholar 

  32. Fang, Q. & Boas, D. A. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Express 17, 20178 (2009).

    Article  ADS  PubMed  CAS  Google Scholar 

  33. Taroni, P., Pifferi, A., Torricelli, A., Comelli, D. & Cubeddu, R. In vivo absorption and scattering spectroscopy of biological tissues. Photochem. Photobiol. Sci. 2, 124–129 (2003).

    Article  PubMed  CAS  Google Scholar 

  34. Khan, R., Gul, B., Khan, S., Nisar, H. & Ahmad, I. Refractive index of biological tissues: review, measurement techniques, and applications. Photodiagnosis Photodyn. Ther. 33, 102192 (2021).

    Article  PubMed  CAS  Google Scholar 

  35. Green, M. A. & Keevers, M. J. Optical properties of intrinsic silicon at 300 K. Prog. Photovoltaics Res. Appl. 3, 189–192 (1995).

    Article  CAS  Google Scholar 

  36. Firbank, M., Hiraoka, M., Essenpreis, M. & Delpy, D. T. Measurement of the optical properties of the skull in the wavelength range 650–950 nm. Phys. Med. Biol. 38, 503–510 (1993).

    Article  PubMed  CAS  Google Scholar 

  37. Rahko, P. S. Evaluation of the skin-to-heart distance in the standing adult by two-dimensional echocardiography. J. Am. Soc. Echocardiogr. 21, 761–764 (2008).

    Article  PubMed  Google Scholar 

  38. Chen, R. et al. Deep brain optogenetics without intracranial surgery. Nat. Biotechnol. 39, 161–164 (2021).

    Article  PubMed  CAS  Google Scholar 

  39. Yin, R. T. et al. Open thoracic surgical implantation of cardiac pacemakers in rats. Nat. Protoc. 18, 374–395 (2023).

    Article  PubMed  CAS  Google Scholar 

  40. Yang, Q. et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 20, 1559–1570 (2021).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  41. Shea, J. B. & Sweeney, M. O. Cardiac resynchronization therapy a patient’s guide. Circulation 108, e64–e66 (2003).

  42. Connolly, S. J., Kerr, C., Gent, M. & Yusuf, S. Dual-chamber versus ventricular pacing. Circulation 94, 578–583 (1996).

    Article  PubMed  CAS  Google Scholar 

  43. Rodés-Cabau, J., Muntané-Carol, G. & Philippon, F. Managing conduction disturbances after TAVR: toward a tailored strategy. JACC Cardiovasc. Interv. 14, 992–994 (2021).

    Article  PubMed  Google Scholar 

  44. Urena, M. & Rodés-Cabau, J. Conduction abnormalities: the true Achilles’ heel of transcatheter aortic valve replacement? JACC Cardiovasc. Interv. 9, 2217–2219 (2016).

    Article  PubMed  Google Scholar 

  45. Pagnesi, M. et al. Incidence, predictors, and prognostic impact of new permanent pacemaker implantation after TAVR with self-expanding valves. JACC Cardiovasc. Interv. 16, 2004–2017 (2023).

    Article  PubMed  Google Scholar 

  46. Reiter, C. et al. Delayed total atrioventricular block after transcatheter aortic valve replacement assessed by implantable loop recorders. JACC Cardiovasc. Interv. 14, 2723–2732 (2021).

    Article  PubMed  Google Scholar 

  47. Muntané-Carol, G. et al. Ambulatory electrocardiographic monitoring following minimalist transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 14, 2711–2722 (2021).

    Article  PubMed  Google Scholar 

  48. Krishnaswamy, A. et al. Feasibility and safety of same-day discharge following transfemoral transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 15, 575–589 (2022).

    Article  PubMed  Google Scholar 

  49. Millimetre-scale, bioresorbable optoelectronic systems for minimally invasive electrotherapy. Code Ocean https://codeocean.com/capsule/9406347/tree/v1 (2025).

Download references

Acknowledgements

We acknowledge support from the Querrey Simpson Institute for Bioelectronics, the Leducq Foundation grant ‘Bioelectronics for Neurocardiology’ and the NIH grant (NIH R01 HL141470). Y.Z. acknowledges support from the National University of Singapore start-up grant and the AHA’s Second Century Early Faculty Independence Award (grant: https://doi.org/10.58275/AHA.23SCEFIA1154076.pc.gr.173925). J. Gong and Z.M. acknowledge the support from AFOSR (grant number FA9550-21-1-0081). We thank E. Dempsey, Q. Ma, N. Ghoreishi-Haack, I. Stepien and S. Han for the help in the biocompatibility study and animal experiment. This work made use of the NUFAB facility of Northwestern University’s NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-2025633), the IIN and Northwestern’s MRSEC programme (NSF DMR-1720139). This work was supported by the Developmental Therapeutics Core and the Center for Advanced Molecular Imaging (RRID:SCR_021192) at Northwestern University and the Robert H. Lurie Comprehensive Cancer Center support grant (NCI P30 CA060553).

Author information

Author notes

  1. These authors contributed equally: Yamin Zhang, Eric Rytkin, Liangsong Zeng, Jong Uk Kim, Lichao Tang, Haohui Zhang

Authors and Affiliations

  1. Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA

    Yamin Zhang, Jong Uk Kim, Seung Gi Seo, Jianyu Gu, Tianyu Yang, Naijia Liu, Wei Ouyang & John A. Rogers

  2. Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA

    Yamin Zhang, Liangsong Zeng, Jong Uk Kim, Kaiyu Zhao, Yue Wang, Li Ding, Xinyue Lu, Elena Aprea, Gengming Jiang, Seung Gi Seo, Jin Wang, Jianyu Gu, Fei Liu, Tianyu Yang, Naijia Liu, Yinsheng Lu, Claire Hoepfner, Alex Hou, Rachel Nolander, Wei Ouyang, Igor R. Efimov & John A. Rogers

  3. Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore

    Yamin Zhang & Lichao Tang

  4. Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA

    Eric Rytkin, Yue Wang, Anastasia Lantsova, Altynai Melisova, Alex Hou, Rachel Nolander, Igor R. Efimov & John A. Rogers

  5. Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA

    Liangsong Zeng, Shupeng Li, Yonggang Huang & John A. Rogers

  6. Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA

    Haohui Zhang & Zengyao Lv

  7. Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

    Aleksei Mikhailov, Anna Pfenniger, Andrey Ardashev, Rishi K. Arora & Igor R. Efimov

  8. Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA

    Kaiyu Zhao, Jiayang Liu, Fei Liu, Yat Fung Larry Li, Nathan S. Purwanto, Yinsheng Lu, John M. Torkelson & John A. Rogers

  9. Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

    Li Ding

  10. The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy

    Elena Aprea

  11. Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA

    Tong Wang & John M. Torkelson

  12. Alnylam Pharmaceuticals Inc, Cambridge, MA, USA

    Keith Bailey

  13. Center for Comparative Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

    Amy Burrell

  14. Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA

    Yue Ying

  15. Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA

    Jiarui Gong & Zhenqiang Ma

  16. Department of Electronic Engineering, Incheon National University, Incheon, Republic of Korea

    Jinheon Jeong & Sung Hun Jin

  17. Department of Chemical Engineering, Dankook University, Yongin, Republic of Korea

    Junhwan Choi

  18. Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

    Wubin Bai

  19. Thayer School of Engineering, Dartmouth College, Hanover, NH, USA

    Wei Ouyang

  20. The University of Chicago Medicine, University of Chicago, Chicago, IL, USA

    Rishi K. Arora

Authors

  1. Yamin Zhang
  2. Eric Rytkin
  3. Liangsong Zeng
  4. Jong Uk Kim
  5. Lichao Tang
  6. Haohui Zhang
  7. Aleksei Mikhailov
  8. Kaiyu Zhao
  9. Yue Wang
  10. Li Ding
  11. Xinyue Lu
  12. Anastasia Lantsova
  13. Elena Aprea
  14. Gengming Jiang
  15. Shupeng Li
  16. Seung Gi Seo
  17. Tong Wang
  18. Jin Wang
  19. Jiayang Liu
  20. Jianyu Gu
  21. Fei Liu
  22. Keith Bailey
  23. Yat Fung Larry Li
  24. Amy Burrell
  25. Anna Pfenniger
  26. Andrey Ardashev
  27. Tianyu Yang
  28. Naijia Liu
  29. Zengyao Lv
  30. Nathan S. Purwanto
  31. Yue Ying
  32. Yinsheng Lu
  33. Claire Hoepfner
  34. Altynai Melisova
  35. Jiarui Gong
  36. Jinheon Jeong
  37. Junhwan Choi
  38. Alex Hou
  39. Rachel Nolander
  40. Wubin Bai
  41. Sung Hun Jin
  42. Zhenqiang Ma
  43. John M. Torkelson
  44. Yonggang Huang
  45. Wei Ouyang
  46. Rishi K. Arora
  47. Igor R. Efimov
  48. John A. Rogers

Contributions

Y.Z. and J.A.R. initiated and conceived the self-powered, light-controlled pacing concept. Y.Z., E.R., I.R.E. and J.A.R. designed the studies and analysed the results. Y.Z., L.Z., K.Z., X.L., A.L., G.J., J.L., F.L., Y.F.L.L., Y.L., C.H., A.H. and R.N. fabricated and characterized the pacemakers. E.R., L.T., A. Mikhailov, L.D., A.B., A.P., A.A. and A. Melisova conducted animal surgeries. Y.Z., E.R., L.Z., L.T., A. Mikhailov, L.D., J.W., A.B., A.P. and W.O., performed in vivo and ex vivo cardiac pacing experiments. W.O., Y.W., J. Gu, T.Y., Y.Y. and Y.L. developed closed-loop and optical control systems. J.U.K., S.G.S., J. Gong, J.J., J.C., S.H.J. and Z.M. designed and fabricated phototransistors. H.Z., S.L., Z.L. and Y.H. performed computational simulations. E.A. and W.B. fabricated bioresorbable optical filters. T.W., N.S.P. and J.M.T. developed and synthesized the hydrogels. L.T., L.D. and K.B. evaluated the biocompatibility. Y.Z., E.R., L.Z., J.U.K., L.T., A. Mikhailov., K.Z., X.L., Y.W., H.Z., A.L., E.A., G.J., S.L., S.G.S., K.B., N.L., W.O., R.K.A., I.R.E. and J.A.R. discussed and interpreted the data. Y.Z. and J.A.R. prepared figures and wrote the paper, with input from E.R., W.O., A. Mikhailov, R.K.A. and I.R.E. In addition, J.U.K., L.Z., L.T., Y.W., H.Z., S.L. and J. Gu. assisted with the preparation of figures and text. Y.Z., L.Z., L.T., H.Z., L.D., W.O., I.R.E. and J.A.R. revised the paper. Y.Z., E.R., L.Z., J.U.K., L.T. and H.Z. contributed equally to this work.

Corresponding authors

Correspondence to Yamin Zhang, Yonggang Huang, Wei Ouyang, Rishi K. Arora, Igor R. Efimov or John A. Rogers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Gábor Duray, Hossam Haick and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Comparisons of previously reported pacemakers and the technology introduced here.

a, Comparisons between conventional pacemakers with leads, leadless pacemakers, bioresorbable pacemakers, and the pacemaker reported here. b, Table showing details of previously reported leadless pacemakers and the pacemaker reported here. Illustration of the pacemaker with leads in a was created with BioRender.com (https://biorender.com). Bioresorbable pacemaker in a adapted from ref. 1, Springer Nature America, Inc.

Extended Data Fig. 2 Characteristics of bipolar junction transistor (BJT)-based phototransistors.

a,b, Characteristic curves of the phototransistors under various light intensities emitted from a NIR LED (850 nm, a) and a red LED (650 nm, b).

Extended Data Fig. 3 Measurement of the operational lifespan of the device.

a, EIS of an agarose gel and chicken tissue. b, The output currents of the pacemaker over days. c, Output currents of the pacemaker over days under pulsed illumination.

Extended Data Fig. 4 In vivo demonstration of cardiac pacing in mouse models.

a, Photograph showing a pacemaker placed on the surface of a mouse heart. b, ECG results before and during mouse heart pacing. c, Strength-duration curve when pacing at 480 bpm. n =  3 biologically independent animals.

Extended Data Fig. 5 Selection of LEDs and optical filters for multi-site, time-synchronized cardiac pacing.

a, Emission spectra for LEDs 1 and 2. b, Transmission curves for filters 1 and 2. c, Transmitted light intensities as a function of incident intensities from LEDs 1 and (2) for filters 1 and 2.

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Rytkin, E., Zeng, L. et al. Millimetre-scale bioresorbable optoelectronic systems for electrotherapy. Nature 640, 77–86 (2025). https://doi.org/10.1038/s41586-025-08726-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-08726-4