Earth’s ambipolar electrostatic field and its role in ion escape to space

12 min read Original article ↗

Data availability

Endurance ephemeris data and all science data presented in this article are available at the Space Physics Data Facility of NASA (https://spdf.gsfc.nasa.gov/data_orbits.html) through the Coordinated Data Analysis Web (CDAWeb) tool (https://cdaweb.gsfc.nasa.gov/) by selecting ‘Sounding Rockets’ from the data sources.

Change history

References

  1. Engwall, E. et al. Earth’s ionospheric outflow dominated by hidden cold plasma. Nat. Geosci. 2, 24–27 (2009).

    Article  ADS  CAS  Google Scholar 

  2. Haaland, S. et al. Estimating the capture and loss of cold plasma from ionospheric outflow. J. Geophys. Res. Space Phys. 117, A07311 (2012).

    Article  ADS  Google Scholar 

  3. André, M., Toledo-Redondo, S. & Yau, A. W. in Space Physics and Aeronomy Collection Vol. 2: Magnetospheres in the Solar System (eds Maggiolo, R. et al.) Geophysical Monograph 259 (American Geophysical Union, Wiley, 2021).

  4. Kistler, L. M. et al. Cusp and nightside auroral sources of O+ in the plasma sheet. J. Geophys. Res. Space Phys. 124, 10036–10047 (2019).

    Article  ADS  CAS  Google Scholar 

  5. Strangeway, R. J., Ergun, R. E., Su, Y.-J., Carlson, C. W. & Elphic, R. C. Factors controlling ionospheric outflows as observed at intermediate altitudes. J. Geophys. Res. Space Phys. 110, A03221 (2005).

    Article  ADS  Google Scholar 

  6. Collinson, G. et al. Ionospheric ambipolar electric fields of Mars and Venus: comparisons between theoretical predictions and direct observations of the electric potential drop. Geophys. Res. Lett. 46, 1168–1176 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Moore, T. E. & Khazanov, G. V. Mechanisms of ionospheric mass escape. J. Geophys. Res. Space Phys. 115, A00J13 (2010).

    Article  ADS  Google Scholar 

  8. Axford, W. I. The polar wind and the terrestrial helium budget. J. Geophys. Res. 73, 6855–6859 (1968).

    Article  ADS  CAS  Google Scholar 

  9. Banks, P. M. & Holzer, T. E. The Polar Wind. J. Geophys. Res. Space Phys. 73, 6846–6854 (1968).

    Article  ADS  CAS  Google Scholar 

  10. Li, K. et al. The effects of the polar rain on the polar wind ion outflow from the nightside ionosphere. J. Geophys. Res. Space Phys. 128, e2023JA031496 (2023).

    Article  ADS  Google Scholar 

  11. Varney, R. H., Solomon, S. C. & Nicolls, M. J. Heating of the sunlit polar cap ionosphere by reflected photoelectrons. J. Geophys. Res. Space Phys. 119, 8660–8684 (2014).

    Article  ADS  Google Scholar 

  12. Khazanov, G. V., Liemohn, M. W. & Moore, T. E. Photoelectron effects on the self-consistent potential in the collisionless polar wind. J. Geophys. Res. Space Phys. 102, 7509–7521 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Collinson, G. A. et al. The electric wind of Venus: a global and persistent “polar wind”-like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions. Geophys. Res. Lett. 43, 5926–5934 (2016).

    Article  ADS  CAS  Google Scholar 

  14. Xu, S. et al. Field-aligned potentials at Mars from MAVEN observations. Geophys. Res. Lett. 45, 10,119–10,127 (2018).

    Article  Google Scholar 

  15. Xu, S., Frahm, R. A., Ma, Y., Luhmann, J. G. & Mitchell, D. L. Magnetic topology at Venus: new insights into the Venus plasma environment. Geophys. Res. Lett. 48, e2021GL095545 (2021).

    Article  ADS  Google Scholar 

  16. Collinson, G. A. et al. A survey of strong electric potential drops in the ionosphere of Venus. Geophys. Res. Lett. 50, e2023GL104989 (2023).

    Article  ADS  Google Scholar 

  17. Coates, A. J., Jonstone, A. D., Sojka, J. J. & Wrenn, G. L. Ionospheric photoelectrons observed in the magnetosphere at distances up to 7 earth radii. Planet. Space Sci. 33, 1267–1275 (1985).

    Article  ADS  Google Scholar 

  18. Fung, S. F. & Hoffman, R. A. A search for parallel electric fields by observing secondary electrons and photoelectrons in the low-altitude auroral zone. J. Geophys. Res. Space Phys. 96, 3533–3548 (1991).

    Article  ADS  Google Scholar 

  19. Collinson, G. et al. The Endurance Rocket Mission. Space Sci. Rev. 218, 39 (2022).

    Article  ADS  Google Scholar 

  20. Coates, A. J. et al. Ionospheric photoelectrons: comparing Venus, Earth, Mars and Titan. Planet. Space Sci. 59, 1019–1027 (2011).

    Article  ADS  CAS  Google Scholar 

  21. Collinson, G. A. et al. Rocket measurements of electron energy spectra from Earth’s photoelectron production layer. Geophys. Res. Lett. 49, e2022GL098209 (2022).

    Article  ADS  Google Scholar 

  22. Gardner, J. L. & Samson, J. A. R. 304 Å photoelectron spectra of CO, N2, O2 and CO2. J. Electron Spectros. Relat. Phenomena 2, 259–266 (1973).

    Article  ADS  CAS  Google Scholar 

  23. Goembel, L., Doering, J. P., Morrison, D. & Paxton, L. J. Atmospheric O/N2 ratios from photoelectron spectra. J. Geophys. Res. 102, 7411–7419 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Gombosi, T. I. & Nagy, A. Time-dependent modeling of field-aligned current-generated ion transients in the polar wind. J. Geophys. Res. 94, 359–369 (1989).

    Article  ADS  Google Scholar 

  25. Liemohn, M. W., Khazanov, G. V., Moore, T. E. & Guiter, S. M. Self-consistent superthermal electron effects on plasmapheric refilling. J. Geophys. Res. 102, 7523–7536 (1997).

    Article  ADS  Google Scholar 

  26. Godbole, N. H. et al. Observations of ion upflow and 630.0 nm emission during pulsating aurora. Front. Phys. 10, 997229 (2022).

    Article  Google Scholar 

  27. Wahlund, J.-E., Opgenoorth, H. J., Häggström, I., Winser, K. J. & Jones, G. O. L. EISCAT observations of topside ionospheric ion outflows during auroral activity: revisited. J. Geophys. Res. 97, 3019–3037 (1992).

    Article  ADS  Google Scholar 

  28. Wu, J. et al. Observations of the structure and vertical transport of the polar upper ionosphere with the EISCAT VHF radar. II - first investigations of the topside O(+) and H(+) vertical ion flows. Ann. Geophys. 10, 375–393 (1992).

    ADS  CAS  Google Scholar 

  29. Collinson, G. et al. Electric Mars: a large trans-terminator electric potential drop on closed magnetic field lines above Utopia Planitia. J. Geophys. Res. Space Phys. 112, 2260–2271 (2017).

    Article  ADS  Google Scholar 

  30. Schunk, R. & Nagy, A. Ionospheres (Cambridge Univ. Press, 2009).

  31. Collinson, G., Chornay, D. J., Glocer, A., Paschalidis, N. & Zesta, E. A hybrid electrostatic retarding potential analyzer for the measurement of plasmas at extremely high energy resolution. Rev. Sci. Instrum. 89, 113306 (2018).

    Article  ADS  PubMed  Google Scholar 

  32. Oyama, K. & Takumi, A. Anisotropy of electron temperature in the ionosphere. Geophys. Res. Lett. 14, 1195–1198 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the 100+ strong team of engineers, scientists and technicians who made the Endurance rocketship mission a success. We thank A. P. Collinson for the useful discussions in preparing and editing the paper. Endurance was funded through the NASA grant 80NSSC19K1206. EISCAT support was supported through the National Environment Research Council grant NE/R017000X/1. EISCAT is an international association supported by research organizations in China (CRIRP), Finland (SA), Japan (NIPR and ISEE), Norway (NFR), Sweden (VR) and the UK (UKRI).

Author information

Authors and Affiliations

  1. Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA

    Glyn A. Collinson, Alex Glocer, Robert Pfaff, Aaron Breneman, Robert Michell, Hassanali Akbari, Ellen Robertson, Jacob Miller, Timothy Cameron, Dennis Chornay, Paulo Uribe, Long Nguyen, S. Adkins, H. Akbari, A. Barrie, A. Breneman, T. Cameron, D. Chornay, G. Collinson, A. Glocer, S. Martin, R. Michell, L. Nguyen, N. Paschalidis, R. Pfaff, C. Pirner, Z. Rawlings, E. Robertson, T. Rosnack, M. Samara, C. Tucker, P. Uribe, M. Wallace, D. Zarro & E. Zesta

  2. Institute for Astrophysics and Computational Sciences, The Catholic University of America, Washington, DC, USA

    Glyn A. Collinson, Hassanali Akbari, H. Akbari, R. Albano, E. Bowlen & G. Collinson

  3. G & K Rocket Yards, Interplanetary Expeditions, Criccieth, UK

    Glyn A. Collinson & G. Collinson

  4. Space and Atmospheric Instrumentation Lab, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA

    Aroh Barjatya, Rachel Conway, Lance Davis, Robert Clayton, Nathan Graves, Shantanab Debchoudhury, Henry Valentine, A. Barjatya, R. Clayton, R. Conway, L. Davis, S. Debchoudhury, N. Graves, P. Ribbens & H. Valentine

  5. College of Engineering and Physical Sciences, University of New Hampshire, Durham, NC, USA

    James Clemmons, Diana Swanson, C. Bancroft, A. Bolton, J. Clemmons, P. Demaine, S. Ellis, M. Francheshini, C. Frost, T. Jones, M. Maimone, D. Puopolo & D. Swanson

  6. Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, Boulder, CO, USA

    Francis Eparvier & F. Eparvier

  7. Space Science Laboratory, University of California at Berkeley, Berkeley, CA, USA

    David Mitchell, Shaosui Xu, D. Mitchell & S. Xu

  8. Department of Physics and Astronomy, University of Leicester, Leicester, UK

    Suzie Imber & S. Imber

  9. Space Weather and Atmosphere Team, British Antarctic Survey, Cambridge, UK

    Andrew Kavanagh & A. Kavanagh

  10. Penn State University, State College, PA, USA

    Jacob Miller

  11. NASA Wallops Flight Facility, Wallops Island, VA, USA

    Ahmed Ghalib, G. Bain, M. Binder, S. Bissett, B. Bonsteel, D. Bowden, D. Bowker, M. Bradshaw, G. Bridges, M. Campbell, P. Cathell, L. Conser, D. Detwiler, M. Disbrow, J. Doughty, R. Ethridge, R. Fahringer, J. Farrell, T. Gass, A. Ghalib, C. Grabusky, G. Harlan, T. Harper, H. Haugh, J. Henderson, D. Henderson, T. Jester, R. Jillard, E. Johnson, H. Johnson, G. Jones, M. King, D. Knight, R. Laman, T. Lankford, P. Lotz, G. Marsh, R. Marshall, T. McFaden, M. Moffett, N. Morris, A. Mueseler, C. Nelson, W. Ogundere, D. Page, E. Pittman, J. Polidan, D. Raley, S. Rodriguez, G. Rosanova, B. Rose, T. Russell, B. Serabian, T. Sherman, T. Snyder, V. Sutton, R. Swift, W. Taylor, R. Terwiliger, S. Tiede, F. Waters, L. West, B. West, T. Wilson & N. Wroblewski

  12. University Center in Svalbard, Longyearbyen, Svalbard and Jan Mayen

    L. Baddeley

  13. Andøya Space, Andenes, Norway

    H. Bahr, K. Blix, H. Borgen, L. Eilertsen, P. Hanssen, K. Herseth, K. Jensen, R. Lien, K. Osbakk, R. Simonsen, J. Søreng & J. Sveen

  14. EISCAT Scientific Association, Kiruna, Sweden

    I. Haggstrom & E. Helgesen

Authors

  1. Glyn A. Collinson
  2. Alex Glocer
  3. Robert Pfaff
  4. Aroh Barjatya
  5. Rachel Conway
  6. Aaron Breneman
  7. James Clemmons
  8. Francis Eparvier
  9. Robert Michell
  10. David Mitchell
  11. Suzie Imber
  12. Hassanali Akbari
  13. Lance Davis
  14. Andrew Kavanagh
  15. Ellen Robertson
  16. Diana Swanson
  17. Shaosui Xu
  18. Jacob Miller
  19. Timothy Cameron
  20. Dennis Chornay
  21. Paulo Uribe
  22. Long Nguyen
  23. Robert Clayton
  24. Nathan Graves
  25. Shantanab Debchoudhury
  26. Henry Valentine
  27. Ahmed Ghalib

Consortia

The Endurance Mission Team

  • S. Adkins
  • , H. Akbari
  • , R. Albano
  • , L. Baddeley
  • , H. Bahr
  • , G. Bain
  • , C. Bancroft
  • , A. Barjatya
  • , A. Barrie
  • , M. Binder
  • , S. Bissett
  • , K. Blix
  • , A. Bolton
  • , B. Bonsteel
  • , H. Borgen
  • , D. Bowden
  • , D. Bowker
  • , E. Bowlen
  • , M. Bradshaw
  • , A. Breneman
  • , G. Bridges
  • , T. Cameron
  • , M. Campbell
  • , P. Cathell
  • , D. Chornay
  • , R. Clayton
  • , J. Clemmons
  • , G. Collinson
  • , L. Conser
  • , R. Conway
  • , L. Davis
  • , S. Debchoudhury
  • , P. Demaine
  • , D. Detwiler
  • , M. Disbrow
  • , J. Doughty
  • , L. Eilertsen
  • , S. Ellis
  • , F. Eparvier
  • , R. Ethridge
  • , R. Fahringer
  • , J. Farrell
  • , M. Francheshini
  • , C. Frost
  • , T. Gass
  • , A. Ghalib
  • , A. Glocer
  • , C. Grabusky
  • , N. Graves
  • , I. Haggstrom
  • , P. Hanssen
  • , G. Harlan
  • , T. Harper
  • , H. Haugh
  • , E. Helgesen
  • , J. Henderson
  • , D. Henderson
  • , K. Herseth
  • , S. Imber
  • , K. Jensen
  • , T. Jester
  • , R. Jillard
  • , E. Johnson
  • , H. Johnson
  • , G. Jones
  • , T. Jones
  • , A. Kavanagh
  • , M. King
  • , D. Knight
  • , R. Laman
  • , T. Lankford
  • , R. Lien
  • , P. Lotz
  • , M. Maimone
  • , G. Marsh
  • , R. Marshall
  • , S. Martin
  • , T. McFaden
  • , R. Michell
  • , D. Mitchell
  • , M. Moffett
  • , N. Morris
  • , A. Mueseler
  • , C. Nelson
  • , L. Nguyen
  • , W. Ogundere
  • , K. Osbakk
  • , D. Page
  • , N. Paschalidis
  • , R. Pfaff
  • , C. Pirner
  • , E. Pittman
  • , J. Polidan
  • , D. Puopolo
  • , D. Raley
  • , Z. Rawlings
  • , P. Ribbens
  • , E. Robertson
  • , S. Rodriguez
  • , G. Rosanova
  • , B. Rose
  • , T. Rosnack
  • , T. Russell
  • , M. Samara
  • , B. Serabian
  • , T. Sherman
  • , R. Simonsen
  • , T. Snyder
  • , J. Søreng
  • , V. Sutton
  • , J. Sveen
  • , D. Swanson
  • , R. Swift
  • , W. Taylor
  • , R. Terwiliger
  • , S. Tiede
  • , C. Tucker
  • , P. Uribe
  • , H. Valentine
  • , M. Wallace
  • , F. Waters
  • , L. West
  • , B. West
  • , T. Wilson
  • , N. Wroblewski
  • , S. Xu
  • , D. Zarro
  •  & E. Zesta

Contributions

The Endurance mission and its overall methodology were conceived by G.A.C. and A. Glocer, who acquired the funding, administered the science team and drafted this paper. The instruments were developed by G.A.C., R.P., A. Barjatya, R. Clayton, A. Breneman, J.C., R.M., L.D., E.R., D.S., L.N., P.U., T.C., A. Ghalib, H.V., N.G. and S.D. Data analysis was performed by G.A.C., A. Glocer, R.P., A. Barjatya, R. Conway, A. Breneman, J.C., F.E., D.M., S.I., H.A., L.D., A.K., D.S., S.X. and J.M.

Corresponding author

Correspondence to Glyn A. Collinson.

Ethics declarations

Competing interests

The authors have no competing interests.

Peer review

Peer review information

Nature thanks Drew Turner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 2 Example spectra from the Photoelectron Spectrometer.

Data calibrated but uncorrected for spacecraft potential. a, PES Scan 72 showing standard resolution (black) and high resolution (red). b, PES Scan 72 zoomed in to the He-II photopeaks showing a gaussian fit (blue) to the primary N2 A2Πu dominated photopeak. c,d, The same for PES Scan 38.

Extended Data Fig. 3 Conversion from peak energy of photopeaks to planetary potential drop below Endurance.

Upleg, top panels; downleg, bottom panels. a,d, Peak energy of N2 A2Πu dominated photopeak as measured. b,e, Energy of photopeak after correction for S/C potential from SLP. c,f, Potential drop below Endurance (as Fig. 2a,b).

Extended Data Fig. 4 Measurements by the Swept Langmuir Probe.

Area denotes ±1σ error. a, Colour-coded timeline of Endurance mission (as per Fig. 1a, Fig. 2a). b, Altitude versus time. c, Total Electron density (m−3). d, Electron temperature (K). e, Potential difference between Endurance and ambient plasma. The periodic (70 s) firing of the ACS thrusters (amber, panel a) temporarily perturbed the plasma environment around the spacecraft. The resulting erroneous measurements by SLP have been cut from the dataset.

Extended Data Fig. 5 Supporting Measurements by the FIELDS instrument.

a, Colour-coded timeline of Endurance mission (as per Fig. 1a, Fig. 2b). b, Mean potential between the two pairs of electric field probes.

Extended Data Fig. 6 Radar measurements from the EISCAT Radar in black compared to in situ measurements by the SLP instrument in gold.

a,b, Plasma density; c,d, Electron temperature. e,f, Ion temperature; g,h, Ion velocity. These plots were made by time-averaging measurements from the upleg and downleg portion of the flight. Error bars represent the standard deviation. EISCAT data were truncated above 500 km in Fig. 3 owing to the large error bars but are shown here in full. The good agreement between independent measurements of \({n}_{e}\) and \({t}_{e}\) by EISCAT and SLP give good confidence in our SLP data analysis.

Supplementary information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collinson, G.A., Glocer, A., Pfaff, R. et al. Earth’s ambipolar electrostatic field and its role in ion escape to space. Nature 632, 1021–1025 (2024). https://doi.org/10.1038/s41586-024-07480-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-07480-3