Measurement of gravitational coupling between millimetre-sized masses

9 min read Original article ↗
  • Unruh, W. G. in Quantum Theory of Gravity: Essays in Honor of the 60th Birthday of Bryce S. DeWitt (ed. Christensen, S. M.) 234–242 (Adam Hilger Limited, 1984).

  • Preskill, J. Do black holes destroy information. In Proc. of the International Symposium on Black Holes, Membranes, Wormholes and Superstrings (eds Kalara S. & Nanopoulos, D. V.) 1992 (World Scientific, 1993).

  • Greenberger, D. M. The disconnect between quantum mechanics and gravity. Preprint at https://arxiv.org/abs/1011.3719 (2010).

  • Penrose, R. On the gravitization of quantum mechanics 1: quantum state reduction. Found. Phys. 44, 557–575 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Will, C. M. The confrontation between general relativity and experiment. Living Rev. Relativ. 17, 3 (2014).

    Article  ADS  MATH  Google Scholar 

  • Adelberger, E. New tests of Einstein’s equivalence principle and Newton’s inverse-square law. Class. Quantum Gravity 18, 2397 (2001).

    Article  ADS  MATH  Google Scholar 

  • Hossenfelder, S. Experimental search for quantum gravity. Preprint at https://arxiv.org/abs/1010.3420v1 (2010).

  • Gillies, G. T. & Unnikrishnan, C. S. The attracting masses in measurements of G: an overview of physical characteristics and performance. Philos. Trans. R. Soc. A 372, 20140022 (2014).

    Article  ADS  Google Scholar 

  • Feldman, B. & Nelson, A. E. New regions for a chameleon to hide. J. High Energy Phys. 2006, 002 (2006).

    Article  MathSciNet  Google Scholar 

  • Burrage, C., Copeland, E. J. & Hinds, E. Probing dark energy with atom interferometry. J. Cosmol. Astropart. Phys. 2015, 042 (2015).

    Article  Google Scholar 

  • Hamilton, P. et al. Atom-interferometry constraints on dark energy. Science 349, 849–851 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  • DeWitt, C. M. & Rickles, D. (eds) The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference (Max Planck Research Library for the History and Development of Knowledge, 2011).

  • Bose, S. et al. Spin entanglement witness for quantum gravity. Phys. Rev. Lett. 119, 240401 (2017).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  • Marletto, C. & Vedral, V. Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity. Phys. Rev. Lett. 119, 240402 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Belenchia, A. et al. Quantum superposition of massive objects and the quantization of gravity. Phys. Rev. D 98, 126009 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Ransom, S. M. et al. A millisecond pulsar in a stellar triple system. Nature 505, 520–524 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  • Akiyama, K. et al. First M87 event horizon telescope results. VI. The shadow and mass of the central black hole. Astrophys. J. Lett. 875, L6 (2019).

    Article  ADS  CAS  Google Scholar 

  • Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical clocks and relativity. Science 329, 1630–1633 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Asenbaum, P. et al. Phase shift in an atom interferometer due to spacetime curvature across its wave function. Phys. Rev. Lett. 118, 183602 (2017).

    Article  ADS  PubMed  Google Scholar 

  • Rosi, G. et al. Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states. Nat. Commun. 8, 15529 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Gundlach, J. & Merkowitz, S. Measurement of Newton’s constant using a torsion balance with angular acceleration feedback. Phys. Rev. Lett. 85, 2869–2872 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Quinn, T., Parks, H., Speake, C. & Davis, R. Improved determination of G using two methods. Phys. Rev. Lett. 111, 101102 (2013).

    Article  ADS  PubMed  Google Scholar 

  • Rosi, G., Sorrentino, F., Cacciapuoti, L., Prevedelli, M. & Tino, G. M. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518–521 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Geraci, A. A., Smullin, S. J., Weld, D. M., Chiaverini, J. & Kapitulnik, A. Improved constraints on non-Newtonian forces at 10 microns. Phys. Rev. D 78, 022002 (2008).

    Article  ADS  Google Scholar 

  • Tan, W.-h. et al. Improvement for testing the gravitational inverse-square law at the submillimeter range. Phys. Rev. Lett. 124, 051301 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lee, J. G., Adelberger, E. G., Cook, T. S., Fleischer, S. M. & Heckel, B. R. New test of the gravitational 1/r2 law at separations down to 52 μm. Phys. Rev. Lett. 124, 101101 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Colella, R., Overhauser, A. & Werner, S. Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474 (1975).

    Article  ADS  CAS  Google Scholar 

  • Al Balushi, A., Cong, W. & Mann, R. B. Optomechanical quantum Cavendish experiment. Phys. Rev. A 98, 043811 (2018).

    Article  ADS  CAS  Google Scholar 

  • Hoskins, J. K., Newman, R. D., Spero, R. & Schultz, J. Experimental tests of the gravitational inverse-square law for mass separations from 2 to 105 cm. Phys. Rev. D 32, 3084–3095 (1985).

    Article  ADS  CAS  Google Scholar 

  • Mitrofanov, V. P. & Ponomareva, O. I. Experimental test of gravitation at small distances. Sov. Phys. JETP 67, 1963 (1988).

    Google Scholar 

  • Schmöle, J., Dragosits, M., Hepach, H. & Aspelmeyer, M. A micromechanical proof-of-principle experiment for measuring the gravitational force of milligram masses. Class. Quantum Gravity 33, 125031 (2016).

    Article  ADS  Google Scholar 

  • Shimoda, T. & Ando, M. Nonlinear vibration transfer in torsion pendulums. Class. Quantum Gravity 36, 125001 (2019).

    Article  ADS  Google Scholar 

  • Ugolini, D., Funk, Q. & Amen, T. Discharging fused silica test masses with ionized nitrogen. Rev. Sci. Instrum. 82, 046108 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Canaguier-Durand, A. et al. Casimir interaction between a dielectric nanosphere and a metallic plane. Phys. Rev. A 83, 032508 (2011).

    Article  ADS  Google Scholar 

  • Komori, K. et al. Attonewton-meter torque sensing with a macroscopic optomechanical torsion pendulum. Phys. Rev. A 101, 011802 (2020).

    Article  ADS  CAS  Google Scholar 

  • Prat-Camps, J., Teo, C., Rusconi, C. C., Wieczorek, W. & Romero-Isart, O. Ultrasensitive inertial and force sensors with diamagnetically levitated magnets. Phys. Rev. Appl. 8, 034002 (2017).

    Article  ADS  Google Scholar 

  • Timberlake, C., Gasbarri, G., Vinante, A., Setter, A. & Ulbricht, H. Acceleration sensing with magnetically levitated oscillators above a superconductor. Appl. Phys. Lett. 115, 224101 (2019).

    Article  ADS  Google Scholar 

  • Monteiro, F. et al. Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures. Phys. Rev. A 101, 053835 (2020).

    Article  ADS  CAS  Google Scholar 

  • Lewandowski, C. W., Knowles, T. D., Etienne, Z. B. & D’Urso, B. High sensitivity accelerometry with a feedback-cooled magnetically levitated microsphere. Phys. Rev. Appl. 15, 014050 (2021).

    Article  ADS  CAS  Google Scholar 

  • Kawasaki, A. et al. High sensitivity, levitated microsphere apparatus for short-distance force measurements. Rev. Sci. Instrum. 91, 083201 (2020).

    Article  ADS  PubMed  Google Scholar 

  • Liu, Y., Mummery, J. & Sillanpää, M. A. Prospects for observing gravitational forces between nonclassical mechanical oscillators. Preprint at https://arxiv.org/abs/2008.10477 (2020).

  • Obukhov, Y. N. & Puetzfeld, D. in Fundamental Theories of Physics 87–130 (Springer, 2019).

  • Speake, C. & Quinn, T. The search for Newton’s constant. Phys. Today 67, 27–33 (2014).

    Article  Google Scholar 

  • Adelberger, E., Heckel, B. & Nelson, A. Tests of the gravitational inverse-square law. Annu. Rev. Nucl. Part. Sci. 53, 77–121 (2003).

    Article  ADS  CAS  Google Scholar 

  • Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365 (1983).

    Article  ADS  Google Scholar 

  • Ignatiev, A. Testing MOND on Earth 1. Can. J. Phys. 93, 166–168 (2015).

    Article  ADS  CAS  Google Scholar 

  • Tebbenjohanns, F., Frimmer, M., Jain, V., Windey, D. & Novotny, L. Motional sideband asymmetry of a nanoparticle optically levitated in free space. Phys. Rev. Lett. 124, 013603 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367, 892–895 (2020).

    Article  ADS  PubMed  Google Scholar 

  • Turner, M. D., Hagedorn, C. A., Schlamminger, S. & Gundlach, J. H. Picoradian deflection measurement with an interferometric quasi-autocollimator using weak value amplification. Opt. Lett. 36, 1479–1481 (2011).

    Article  ADS  PubMed  Google Scholar 

  • Schmoele, J. Development of a Micromechanical Proof-Of-Principle Experiment for Measuring the Gravitational Force of Milligram Masses. PhD thesis, Univ. of Vienna (2017).

  • Newport pneumatic optical table performance. Newport https://www.newport.com/n/compliance-and-transmissibility-curves

  • Lewandowski, C. W., Knowles, T. D., Etienne, Z. B. & D’Urso, B. Active optical table tilt stabilization. Rev. Sci. Instrum. 91, 076102 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Displacement of open loop piezo actuators. PI https://www.pi-usa.us/en/products/piezo-motors-stages-actuators/piezo-motion-control-tutorial/tutorial-4-20/

  • Weiss, R. Charging of the Test Masses Past, Present and Future. LIGO Document T1100332 (2011); https://dcc.ligo.org/public/0115/G1401153/002/charging.pdf

  • Lekner, J. Electrostatics of two charged conducting spheres. Proc. R. Soc. A 468, 2829–2848 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Díaz, J., Ruiz, M., Sánchez-Pastor, P. S. & Romero, P. Urban seismology: on the origin of earth vibrations within a city. Sci. Rep. 7, 1 (2017).

    Article  Google Scholar 

  • Groos, J. C. & Ritter, J. R. R. Time domain classification and quantification of seismic noise in an urban environment. Geophys. J. Int. 179, 1213–1231 (2009).

    Article  ADS  Google Scholar 

  • Bourdillon, A., Ropars, G., Gaffet, S. & Le Floch, A. Opposite sense ground rotations of a pair of Cavendish balances in earthquakes. Proc. R. Soc. A 471, 20140997 (2015).

    Article  ADS  Google Scholar 

  • Shimoda, T., Aritomi, N., Shoda, A., Michimura, Y. & Ando, M. Seismic cross-coupling noise in torsion pendulums. Phys. Rev. D 97, 104003 (2018).

    Article  ADS  CAS  Google Scholar 

  • Gettings, C. & Speake, C. An air suspension to demonstrate the properties of torsion balances with fibers of zero length. Rev. Sci. Instrum. 91, 025108 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lide, D. R. CRC Handbook of Chemistry and Physics Vol. 85 (CRC Press, 2004).

  • Shih, J. W. Magnetic properties of gold-iron alloys. Phys. Rev. 38, 2051–2055 (1931).

    Article  ADS  CAS  Google Scholar 

  • Henry, W. & Rogers, J. XXI. The magnetic susceptibilities of copper, silver and gold and errors in the Gouy method. Philos. Mag. 1, 223–236 (1956).

    Article  ADS  CAS  Google Scholar 

  • Sushkov, A., Kim, W., Dalvit, D. & Lamoreaux, S. Observation of the thermal Casimir force. Nat. Phys. 7, 230–233 (2011).

    Article  CAS  Google Scholar 

  • Emig, T., Graham, N., Jaffe, R. L. & Kardar, M. Casimir forces between arbitrary compact objects. Phys. Rev. Lett. 99, 170403 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Beer, W. et al. The METAS 1 kg vacuum mass comparator-adsorption layer measurements on gold-coated copper buoyancy artefacts. Metrologia 39, 263 (2002).

    Article  ADS  CAS  Google Scholar 

  • Gläser, M. & Borys, M. Precision mass measurements. Rep. Prog. Phys. 72, 126101 (2009).

    Article  ADS  Google Scholar