Climate and air-quality benefits of a realistic phase-out of fossil fuels

7 min read Original article ↗
  • Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • Cohen, A. J. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 1907–1918 (2017).

    Article  Google Scholar 

  • Butt, E. W. et al. Global and regional trends in particulate air pollution and attributable health burden over the past 50 years. Environ. Res. Lett. 12, 104017 (2017).

    Article  ADS  Google Scholar 

  • Samset, B. H. et al. Climate impacts from a removal of anthropogenic aerosol emissions. Geophys. Res. Lett. 45, 1020–1029 (2018).

    Article  CAS  ADS  Google Scholar 

  • Raes, F. & Seinfeld, J. H. New directions: climate change and air pollution abatement: a bumpy road. Atmos. Environ. 43, 5132–5133 (2009).

    Article  CAS  ADS  Google Scholar 

  • Andreae, M. O., Jones, C. D. & Cox, P. M. Strong present-day aerosol cooling implies a hot future. Nature 435, 1187–1190 (2005).

    Article  CAS  ADS  Google Scholar 

  • Li, B. et al. The contribution of China’s emissions to global climate forcing. Nature 531, 357–361 (2016).

    Article  CAS  ADS  Google Scholar 

  • Arneth, A., Unger, N., Kulmala, M. & Andreae, M. O. Clean the air, heat the planet? Science 326, 672–673 (2009).

    Article  CAS  Google Scholar 

  • Lelieveld, J., Klingmüller, K., Pozzer, A., Burnett, R. T., Haines, A. & Ramanathan, V. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl Acad. Sci. USA 116, 7192–7197 (2019).

    Article  CAS  ADS  Google Scholar 

  • Kloster, S. et al. A GCM study of future climate response to aerosol pollution reductions. Clim. Dyn. 34, 1177–1194 (2010).

    Article  Google Scholar 

  • Schellnhuber, H. J. Global warming: stop worrying, start panicking? Proc. Natl Acad. Sci. USA 105, 14239–14240 (2008).

    Article  CAS  ADS  Google Scholar 

  • Ramanathan, V. & Feng, Y. On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead. Proc. Natl Acad. Sci. USA 105, 14245–14250 (2008).

    Article  CAS  ADS  Google Scholar 

  • Brasseur, G. P. & Roeckner, E. Impact of improved air quality on the future evolution of climate. Geophys. Res. Lett. 32, L23704 (2005).

    Article  ADS  Google Scholar 

  • Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • Matthews, H. D. & Zickfeld, K. Climate response to zeroed emissions of greenhouse gases and aerosols. Nat. Clim. Change 2, 338–341 (2012).

    Article  CAS  ADS  Google Scholar 

  • Hare, B. & Meinshausen, M. How much warming are we committed to and how much can be avoided? Clim. Change 75, 111–149 (2006).

    Article  CAS  ADS  Google Scholar 

  • Smith, C. J. et al. Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming. Nat. Commun. 10, 101 (2019).

    Article  ADS  Google Scholar 

  • Hienola, A. et al. The impact of aerosol emissions on the 1.5 degrees C pathways. Environ. Res. Lett. 13 https://doi.org/10.1088/1748-9326/aab1b2 (2018).

  • Fitzpatrick, B. Scrubbing aerosol particles from the atmosphere ‘a Faustian bargain,’ study finds. National Post https://nationalpost.com/news/world/scrubbing-aerosol-particles-from-the-atmosphere-a-faustian-bargain-study-finds (2018).

  • Rogelj, J. et al. in Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2018).

  • de Coninck, H. et al. in Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2018).

  • Haegel, N. M. et al. Terawatt-scale photovoltaics: trajectories and challenges. Science 356, 141–143 (2017).

    Article  CAS  ADS  Google Scholar 

  • Smith, C. J. et al. FAIR v1.3: a simple emissions-based impulse response and carbon cycle model. Geosci. Model Dev. 11, 2273–2297 (2018).

    Article  CAS  ADS  Google Scholar 

  • Millar, R. J., Nicholls, Z. R., Friedlingstein, P. & Allen, M. R. A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions. Atmos. Chem. Phys. 2017, 7213–7228 (2017).

    Article  ADS  Google Scholar 

  • Philipona, R., Behrens, K. & Ruckstuhl, C. How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys. Res. Lett. 36, L02806 (2009).

    Article  ADS  Google Scholar 

  • Leibensperger, E. et al. Climatic effects of 1950–2050 changes in US anthropogenic aerosols—Part 2: climate response. Atmos. Chem. Phys. 12, 3349–3362 (2012).

    Article  CAS  ADS  Google Scholar 

  • Zheng, B. et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 18, 14095–14111 (2018).

    Article  CAS  ADS  Google Scholar 

  • Silva, R. A. et al. The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble. Atmos. Chem. Phys. 16, 9847–9862 (2016).

    Article  CAS  ADS  Google Scholar 

  • Shindell, D., Faluvegi, G., Seltzer, K. & Shindell, C. Quantified, localized health benefits of accelerated carbon dioxide emissions reductions. Nat. Clim. Change 8, 291–295 (2018).

    Article  CAS  ADS  Google Scholar 

  • Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).

    Article  Google Scholar 

  • The Economic Consequences of Outdoor Air Pollution (OECD, 2016)

  • Huppmann, D., Rogelj, J., Kriegler, E., Krey, V. & Riahi, K. A new scenario resource for integrated 1.5 °C research. Nat. Clim. Change 8, 1027–1030 (2018).

    Article  ADS  Google Scholar 

  • Huppmann, D. et al. IAMC 1.5 °C Scenario Explorer and Data hosted by IIASA (Integrated Assessment Modeling Consortium & International Institute for Applied Systems Analysis, 2018).

  • Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  • Raupach, M. R. et al. Global and regional drivers of accelerating CO2 emissions. Proc. Natl Acad. Sci. USA 104, 10288–10293 (2007).

    Article  CAS  ADS  Google Scholar 

  • Andrews, T., Gregory, J. M., Webb, M. J. & Taylor, K. E. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys. Res. Lett. 39, L09712 (2012).

    ADS  Google Scholar 

  • Etminan, M., Myhre, G., Highwood, E. J. & Shine, K. P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys. Res. Lett. 43, 12614–12623 (2016).

    Article  CAS  ADS  Google Scholar 

  • Myhre, G. et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. 13, 1853–1877 (2013).

    Article  CAS  ADS  Google Scholar 

  • Ghan, S. J. et al. A simple model of global aerosol indirect effects. J. Geophys. Res. Atmos. 118, 6688–6707 (2013).

    Article  ADS  Google Scholar 

  • Joos, F. et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825 (2013).

    Article  ADS  Google Scholar 

  • Thompson, D. W. J., Barnes, E. A., Deser, C., Foust, W. E. & Phillips, A. S. Quantifying the role of internal climate variability in future climate trends. J. Clim. 28, 6443–6456 (2015).

    Article  ADS  Google Scholar 

  • Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. J. Geophys. Res. 117, D08101 (2012).

    Article  ADS  Google Scholar 

  • Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

    Article  ADS  Google Scholar 

  • Vose, R. S. et al. NOAA’s merged land–ocean surface temperature analysis. Bull. Am. Meteorol. Soc. 93, 1677–1685 (2012).

    Article  ADS  Google Scholar 

  • Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—Part 1: Model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

    Article  CAS  ADS  Google Scholar 

  • Leach, N. J. et al. Current level and rate of warming determine emissions budgets under ambitious mitigation. Nat. Geosci. 11, 574–579 (2018).

    Article  CAS  ADS  Google Scholar 

  • Forster, P. M. et al. Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. Atmos. 118, 1139–1150 (2013).

    Article  ADS  Google Scholar 

  • Millar, R. J. et al. Model structure in observational constraints on transient climate response. Clim. Change 131, 199–211 (2015).

    Article  ADS  Google Scholar 

  • Shindell, D., Lee, Y. & Faluvegi, G. Climate and health impacts of US emissions reductions consistent with 2 °C. Nat. Clim. Change 6, 503–507 (2016).

    Article  ADS  Google Scholar 

  • Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).

    Article  ADS  Google Scholar 

  • Rohde, R. et al. Berkeley Earth temperature averaging process. Geoinfor. Geostat. An Overview 1, https://doi.org/10.4172/2327-4581.1000103 (2013).