Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Cohen, A. J. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 1907–1918 (2017).
Butt, E. W. et al. Global and regional trends in particulate air pollution and attributable health burden over the past 50 years. Environ. Res. Lett. 12, 104017 (2017).
Samset, B. H. et al. Climate impacts from a removal of anthropogenic aerosol emissions. Geophys. Res. Lett. 45, 1020–1029 (2018).
Raes, F. & Seinfeld, J. H. New directions: climate change and air pollution abatement: a bumpy road. Atmos. Environ. 43, 5132–5133 (2009).
Andreae, M. O., Jones, C. D. & Cox, P. M. Strong present-day aerosol cooling implies a hot future. Nature 435, 1187–1190 (2005).
Li, B. et al. The contribution of China’s emissions to global climate forcing. Nature 531, 357–361 (2016).
Arneth, A., Unger, N., Kulmala, M. & Andreae, M. O. Clean the air, heat the planet? Science 326, 672–673 (2009).
Lelieveld, J., Klingmüller, K., Pozzer, A., Burnett, R. T., Haines, A. & Ramanathan, V. Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc. Natl Acad. Sci. USA 116, 7192–7197 (2019).
Kloster, S. et al. A GCM study of future climate response to aerosol pollution reductions. Clim. Dyn. 34, 1177–1194 (2010).
Schellnhuber, H. J. Global warming: stop worrying, start panicking? Proc. Natl Acad. Sci. USA 105, 14239–14240 (2008).
Ramanathan, V. & Feng, Y. On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead. Proc. Natl Acad. Sci. USA 105, 14245–14250 (2008).
Brasseur, G. P. & Roeckner, E. Impact of improved air quality on the future evolution of climate. Geophys. Res. Lett. 32, L23704 (2005).
Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Matthews, H. D. & Zickfeld, K. Climate response to zeroed emissions of greenhouse gases and aerosols. Nat. Clim. Change 2, 338–341 (2012).
Hare, B. & Meinshausen, M. How much warming are we committed to and how much can be avoided? Clim. Change 75, 111–149 (2006).
Smith, C. J. et al. Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming. Nat. Commun. 10, 101 (2019).
Hienola, A. et al. The impact of aerosol emissions on the 1.5 degrees C pathways. Environ. Res. Lett. 13 https://doi.org/10.1088/1748-9326/aab1b2 (2018).
Fitzpatrick, B. Scrubbing aerosol particles from the atmosphere ‘a Faustian bargain,’ study finds. National Post https://nationalpost.com/news/world/scrubbing-aerosol-particles-from-the-atmosphere-a-faustian-bargain-study-finds (2018).
Rogelj, J. et al. in Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2018).
de Coninck, H. et al. in Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2018).
Haegel, N. M. et al. Terawatt-scale photovoltaics: trajectories and challenges. Science 356, 141–143 (2017).
Smith, C. J. et al. FAIR v1.3: a simple emissions-based impulse response and carbon cycle model. Geosci. Model Dev. 11, 2273–2297 (2018).
Millar, R. J., Nicholls, Z. R., Friedlingstein, P. & Allen, M. R. A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions. Atmos. Chem. Phys. 2017, 7213–7228 (2017).
Philipona, R., Behrens, K. & Ruckstuhl, C. How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys. Res. Lett. 36, L02806 (2009).
Leibensperger, E. et al. Climatic effects of 1950–2050 changes in US anthropogenic aerosols—Part 2: climate response. Atmos. Chem. Phys. 12, 3349–3362 (2012).
Zheng, B. et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 18, 14095–14111 (2018).
Silva, R. A. et al. The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble. Atmos. Chem. Phys. 16, 9847–9862 (2016).
Shindell, D., Faluvegi, G., Seltzer, K. & Shindell, C. Quantified, localized health benefits of accelerated carbon dioxide emissions reductions. Nat. Clim. Change 8, 291–295 (2018).
Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).
The Economic Consequences of Outdoor Air Pollution (OECD, 2016)
Huppmann, D., Rogelj, J., Kriegler, E., Krey, V. & Riahi, K. A new scenario resource for integrated 1.5 °C research. Nat. Clim. Change 8, 1027–1030 (2018).
Huppmann, D. et al. IAMC 1.5 °C Scenario Explorer and Data hosted by IIASA (Integrated Assessment Modeling Consortium & International Institute for Applied Systems Analysis, 2018).
Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).
Raupach, M. R. et al. Global and regional drivers of accelerating CO2 emissions. Proc. Natl Acad. Sci. USA 104, 10288–10293 (2007).
Andrews, T., Gregory, J. M., Webb, M. J. & Taylor, K. E. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys. Res. Lett. 39, L09712 (2012).
Etminan, M., Myhre, G., Highwood, E. J. & Shine, K. P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys. Res. Lett. 43, 12614–12623 (2016).
Myhre, G. et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. 13, 1853–1877 (2013).
Ghan, S. J. et al. A simple model of global aerosol indirect effects. J. Geophys. Res. Atmos. 118, 6688–6707 (2013).
Joos, F. et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825 (2013).
Thompson, D. W. J., Barnes, E. A., Deser, C., Foust, W. E. & Phillips, A. S. Quantifying the role of internal climate variability in future climate trends. J. Clim. 28, 6443–6456 (2015).
Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. J. Geophys. Res. 117, D08101 (2012).
Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).
Vose, R. S. et al. NOAA’s merged land–ocean surface temperature analysis. Bull. Am. Meteorol. Soc. 93, 1677–1685 (2012).
Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—Part 1: Model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).
Leach, N. J. et al. Current level and rate of warming determine emissions budgets under ambitious mitigation. Nat. Geosci. 11, 574–579 (2018).
Forster, P. M. et al. Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. Atmos. 118, 1139–1150 (2013).
Millar, R. J. et al. Model structure in observational constraints on transient climate response. Clim. Change 131, 199–211 (2015).
Shindell, D., Lee, Y. & Faluvegi, G. Climate and health impacts of US emissions reductions consistent with 2 °C. Nat. Clim. Change 6, 503–507 (2016).
Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).
Rohde, R. et al. Berkeley Earth temperature averaging process. Geoinfor. Geostat. An Overview 1, https://doi.org/10.4172/2327-4581.1000103 (2013).