An entanglement-based wavelength-multiplexed quantum communication network

5 min read Original article ↗
  • Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  MATH  Google Scholar 

  • Stucki, D. et al. Long-term performance of the SwissQuantum quantum key distribution network in a field environment. New J. Phys. 13, 123001 (2011).

    Article  ADS  Google Scholar 

  • Sasaki, M. et al. Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19, 10387–10409 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Peev, M. et al. The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009).

    Article  ADS  CAS  Google Scholar 

  • Xu, F. et al. Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chin. Sci. Bull. 54, 2991–2997 (2009).

    Article  Google Scholar 

  • Elliott, C. et al. Current status of the DARPA quantum network. Proc SPIE 5815, 138–149 (2005).

    Article  ADS  Google Scholar 

  • Choi, I., Young, R. J. & Townsend, P. D. Quantum information to the home. New J. Phys. 13, 063039 (2011).

    Article  ADS  Google Scholar 

  • Mao, Y. et al. Integrating quantum key distribution with classical communications in backbone fiber network. Opt. Express 26, 6010–6020 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Patel, K. et al. Coexistence of high-bit-rate quantum key distribution and data on optical fiber. Phys. Rev. X 2, 041010 (2012).

    Google Scholar 

  • Korzh, B. et al. Provably secure and practical quantum key distribution over 307 km of optical fibre. Nat. Photon. 9, 163–168 (2015).

    Article  ADS  CAS  Google Scholar 

  • Yin, H.-L. et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016).

    Article  ADS  PubMed  Google Scholar 

  • Ursin, R. et al. Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007).

    Article  CAS  Google Scholar 

  • Liao, S.-K. et al. Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Takenaka, H. et al. Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite. Nat. Photon. 11, 502–508 (2017).

    Article  CAS  Google Scholar 

  • Günthner, K. et al. Quantum-limited measurements of optical signals from a geostationary satellite. Optica 4, 611–616 (2017).

    Article  Google Scholar 

  • Törmä, P. & Gheri, K. M. Establishing multi-party entanglement with entangled photons. AIP Conf. Proc. 461, 220–228 (1999).

    ADS  Google Scholar 

  • Townsend, P. D. Quantum cryptography on multiuser optical fibre networks. Nature 385, 47–49 (1997).

    Article  ADS  CAS  Google Scholar 

  • Fröhlich, B. et al. A quantum access network. Nature 501, 69–72 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Toliver, P. et al. Experimental investigation of quantum key distribution through transparent optical switch elements. IEEE Photonics Technol. Lett. 15, 1669–1671 (2003).

    Article  ADS  Google Scholar 

  • Chen, T.-Y. et al. Metropolitan all-pass and inter-city quantum communication network. Opt. Express 18, 27217–27225 (2010).

    Article  ADS  PubMed  Google Scholar 

  • Chang, X.-Y., Deng, D.-L., Yuan, X.-X. et al. Experimental realization of an entanglement access network and secure multi-party computation. Sci. Rep. 6, 29453 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Aktas, D. et al. Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography. Laser Photonics Rev. 10, 451–457 (2016).

    Article  ADS  Google Scholar 

  • Zhu, E. Y. et al. Multi-party agile QKD network with a fiber-based entangled source. In 2015 Conf. on Lasers and Electro-optics (CLEO): Science and Innovations abstr. JW2A.10 (Optical Society of America, 2015).

  • Lim, H. C., Yoshizawa, A., Tsuchida, H. & Kikuchi, K. Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-multiplexed entanglement distribution. Opt. Express 16, 16052–16057 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Herbauts, I., Blauensteiner, B., Poppe, A., Jennewein, T. & Hübel, H. Demonstration of active routing of entanglement in a multi-user network. Opt. Express 21, 29013–29024 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ma, X., Fung, C.-H. & Lo, H.-K. Quantum key distribution with entangled photon sources. Phys. Rev. A 76, 012307 (2007).

    Article  ADS  CAS  Google Scholar 

  • Ciurana, A. et al. Quantum metropolitan optical network based on wavelength division multiplexing. Opt. Express 22, 1576–1593 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  • He, G. P. Simple quantum protocols for the millionaire problem with a semi-honest third party. Int. J. Quant. Inf. 11, 1350025 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  • Islam, T. & Wehner, S. Asynchronous reference frame agreement in a quantum network. New J. Phys. 18, 033018 (2016).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Gayer, O., Sacks, Z., Galun, E. & Arie, A. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3. Appl. Phys. B 91, 343–348 (2008).

    Article  ADS  CAS  Google Scholar 

  • Oh, J., Antonelli, C. & Brodsky, M. Coincidence rates for photon pairs in WDM environment. J. Lightwave Technol. 29, 324–329 (2011).

    Article  ADS  Google Scholar 

  • Ghalbouni, J., Agha, I., Frey, R., Diamanti, E. & Zaquine, I. Experimental wavelength-division-multiplexed photon-pair distribution. Opt. Lett. 38, 34–36 (2013).

    Article  ADS  PubMed  Google Scholar 

  • Monteiro, F., Martin, A., Sanguinetti, B., Zbinden, H. & Thew, R. T. Narrowband photon pair source for quantum networks. Opt. Express 22, 4371–4378 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kim, T., Fiorentino, M. & Wong, F. N. C. Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer. Phys. Rev. A 73, 012316 (2006).

    Article  ADS  CAS  Google Scholar 

  • Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T. & Zeilinger, A. A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Inagaki, T. et al. Entanglement distribution over 300 km of fiber. Opt. Express 21, 23241–23249 (2013).

    Article  ADS  PubMed  Google Scholar 

  • Roslund, J., De Araújo, R. M., Jiang, S., Fabre, C. & Treps, N. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photon. 8, 109–112 (2014).

    Article  ADS  CAS  Google Scholar