How deep is the brain? The shallow brain hypothesis

31 min read Original article ↗
  • Hegde, J. & Felleman, D. J. Reappraising the functional implications of the primate visual anatomical hierarchy. Neuroscientist 13, 416–421 (2007).

    Article  PubMed  Google Scholar 

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Stokel-Walker, C. & Van Noorden, R. What ChatGPT and generative AI mean for science. Nature 614, 214–216 (2023).

    Article  CAS  PubMed  Google Scholar 

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 (2016).

  • Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015).

    Article  Google Scholar 

  • Xu, K. et al. Show, attend and tell: neural image caption generation with visual attention. In 32nd Int. Conf. on Machine Learning (eds F. Bach. & D. Blei) 2048–2057 (2015).

  • Fukushima, K. Neocognitron—a self-organizing neural network model for a mechanism of pattern-recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, L. & Tsao, D. Y. The code for facial identity in the primate brain. Cell 169, 1013–1028.e14 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamins, D. L. et al. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl Acad. Sci. USA 111, 8619–8624 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guclu, U. & van Gerven, M. A. Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J. Neurosci. 35, 10005–10014 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cichy, R. M., Khosla, A., Pantazis, D., Torralba, A. & Oliva, A. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Sci. Rep. 6, 27755 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrimpf, M. et al. The neural architecture of language: integrative modeling converges on predictive processing. Proc. Natl Acad. Sci. USA 118, e2015646118 (2021).

    Article  Google Scholar 

  • Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annu. Rev. Vis. Sci. 1, 417–446 (2015).

    Article  PubMed  Google Scholar 

  • Yamins, D. L. & DiCarlo, J. J. Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 815–836 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Lee, T. S. & Mumford, D. Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20, 1434–1448 (2003).

    Article  PubMed  Google Scholar 

  • Srinivasan, M. V., Laughlin, S. B. & Dubs, A. Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. Lond. B Biol. Sci. 216, 427–459 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Dayan, P., Hinton, G. E., Neal, R. M. & Zemel, R. S. The Helmholtz machine. Neural Comput. 7, 889–904 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Dora, S., Bohte, S. M. & Pennartz, C. M. A. Deep gated Hebbian predictive coding accounts for emergence of complex neural response properties along the visual cortical hierarchy. Front. Comput. Neurosci. 15, 666131 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • McDermott, J. H., Wrobleski, D. & Oxenham, A. J. Recovering sound sources from embedded repetition. Proc. Natl Acad. Sci. USA 108, 1188–1193 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mill, R. W., Bohm, T. M., Bendixen, A., Winkler, I. & Denham, S. L. Modelling the emergence and dynamics of perceptual organisation in auditory streaming. PLoS Comput. Biol. 9, e1002925 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanai, R., Komura, Y., Shipp, S. & Friston, K. Cerebral hierarchies: predictive processing, precision and the pulvinar. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140169 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartenbeck, P., FitzGerald, T. H., Mathys, C., Dolan, R. & Friston, K. The dopaminergic midbrain encodes the expected certainty about desired outcomes. Cereb. Cortex 25, 3434–3445 (2015).

    Article  PubMed  Google Scholar 

  • Rikhye, R. V., Wimmer, R. D. & Halassa, M. M. Toward an integrative theory of thalamic function. Annu. Rev. Neurosci. 41, 163–183 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Minsky, M. & Papert, S. Perceptrons; An Introduction to Computational Geometry (MIT Press, 1969).

  • Gross, C. G., Rocha-Miranda, C. E. & Bender, D. B. Visual properties of neurons in inferotemporal cortex of the macaque. J. Neurophysiol. 35, 96–111 (1972).

    Article  CAS  PubMed  Google Scholar 

  • Tsao, D. Y., Schweers, N., Moeller, S. & Freiwald, W. A. Patches of face-selective cortex in the macaque frontal lobe. Nat. Neurosci. 11, 877–879 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegde, J. & Van Essen, D. C. A comparative study of shape representation in macaque visual areas V2 and V4. Cereb. Cortex 17, 1100–1116 (2007).

    Article  PubMed  Google Scholar 

  • Rockland, K. S. & Pandya, D. N. Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res. 179, 3–20 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Markov, N. T. et al. Cortical high-density counterstream architectures. Science 342, 1238406 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Markov, N. T. & Kennedy, H. The importance of being hierarchical. Curr. Opin. Neurobiol. 23, 187–194 (2013).

    Article  CAS  PubMed  Google Scholar 

  • D’Souza, R. D. et al. Hierarchical and nonhierarchical features of the mouse visual cortical network. Nat. Commun. 13, 503 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegle, J. H. et al. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592, 86–92 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura, H., Gattass, R., Desimone, R. & Ungerleider, L. G. The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques. J. Neurosci. 13, 3681–3691 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkhalter, A., D’Souza, R. D., Ji, W. & Meier, A. M. Integration of feedforward and feedback information streams in the modular architecture of mouse visual cortex. Annu. Rev. Neurosci. 46, 259–280 (2023).

    Article  PubMed  Google Scholar 

  • Coogan, T. A. & Burkhalter, A. Hierarchical organization of areas in rat visual cortex. J. Neurosci. 13, 3749–3772 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennartz, C. M. A., Dora, S., Muckli, L. & Lorteije, J. A. M. Towards a unified view on pathways and functions of neural recurrent processing. Trends Neurosci. 42, 589–603 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Findling, C. et al. Brain-wide representations of prior information in mouse decision-making. Preprint at bioRxiv https://doi.org/10.1101/2023.07.04.547684 (2023).

  • Keller, G. B. & Mrsic-Flogel, T. D. Predictive processing: a canonical cortical computation. Neuron 100, 424–435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller, G. B., Bonhoeffer, T. & Hubener, M. Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. Neuron 74, 809–815 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Jordan, R. & Keller, G. B. Opposing influence of top-down and bottom-up input on excitatory layer 2/3 neurons in mouse primary visual cortex. Neuron 108, 1194–1206.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padamsey, Z. & Rochefort, N. L. Defying expectations: how neurons compute prediction errors in visual cortex. Neuron 108, 1016–1019 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Muzzu, T. & Saleem, A. B. Feature selectivity can explain mismatch signals in mouse visual cortex. Cell Rep. 37, 109772 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh, K. S., McGovern, D. P., Clark, A. & O’Connell, R. G. Evaluating the neurophysiological evidence for predictive processing as a model of perception. Ann. N. Y. Acad. Sci. 1464, 242–268 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwiedrzik, C. M. & Freiwald, W. A. High-level prediction signals in a low-level area of the macaque face-processing hierarchy. Neuron 96, 89–97.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Issa, E. B., Cadieu, C. F. & DiCarlo, J. J. Neural dynamics at successive stages of the ventral visual stream are consistent with hierarchical error signals. eLife 7, e42870 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chao, Z. C., Takaura, K., Wang, L., Fujii, N. & Dehaene, S. Large-scale cortical networks for hierarchical prediction and prediction error in the primate brain. Neuron 100, 1252–1266.e3 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Spratling, M. W. A review of predictive coding algorithms. Brain Cogn. 112, 92–97 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Spratling, M. W. Fitting predictive coding to the neurophysiological data. Brain Res. 1720, 146313 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Bianchini, M. & Scarselli, F. On the complexity of neural network classifiers: a comparison between shallow and deep architectures. IEEE Trans. Neural Netw. Learn. Syst. 25, 1553–1565 (2014).

    Article  PubMed  Google Scholar 

  • Cohen, N., Sharir, O. & Shashua, A. On the expressive power of deep learning: a tensor analysis. In 29th Annual Conference on Learning Theory (eds. Feldman, V., Rakhlin, A. & Shamir, O.) 698–728 (2016).

  • Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771–1800 (2002).

    Article  PubMed  Google Scholar 

  • Dabelow, L. & Ueda, M. Three learning stages and accuracy-efficiency tradeoff of restricted Boltzmann machines. Nat. Commun. 13, 5474 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao, R., Kornblith, S., Ren, M., Fleet, D. J. & Hinton, G. Gaussian–Bernoulli RBMs without tears. Preprint at arXiv https://doi.org/10.48550/ARXIV.2210.10318 (2022).

  • Hilgetag, C. C. & Goulas, A. ‘Hierarchy’ in the organization of brain networks. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190319 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherman, S. M. & Guillery, R. W. Functional organization of thalamocortical relays. J. Neurophysiol. 76, 1367–1395 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Jones, E. G. The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 24, 595–601 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Sherman, S. M. & Guillery, R. W. Exploring the Thalamus and Its Role in Cortical Function 2nd edn (MIT Press, 2009).

  • Halassa, M. Thalamus 1st edn (Cambridge Univ. Press, 2023).

  • Kemp, J. M. & Powell, T. P. The cortico-striate projection in the monkey. Brain 93, 525–546 (1970).

    Article  CAS  PubMed  Google Scholar 

  • Oka, H. Organization of the cortico-caudate projections. A horseradish peroxidase study in the cat. Exp. Brain Res. 40, 203–208 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Ito, S. & Feldheim, D. A. The mouse superior colliculus: an emerging model for studying circuit formation and function. Front. Neural Circuits 12, 10 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Basso, M. A. & May, P. J. Circuits for action and cognition: a view from the superior colliculus. Annu. Rev. Vis. Sci. 3, 197–226 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • May, P. J. The mammalian superior colliculus: laminar structure and connections. Prog. Brain Res. 151, 321–378 (2006).

    Article  PubMed  Google Scholar 

  • McBride, E. G. et al. Influence of claustrum on cortex varies by area, layer, and cell type. Neuron 111, 275–290.e5 (2022).

    Article  PubMed  Google Scholar 

  • Narikiyo, K. et al. The claustrum coordinates cortical slow-wave activity. Nat. Neurosci. 23, 741–753 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Jackson, J., Karnani, M. M., Zemelman, B. V., Burdakov, D. & Lee, A. K. Inhibitory control of prefrontal cortex by the claustrum. Neuron 99, 1029–1039.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legg, C. R., Mercier, B. & Glickstein, M. Corticopontine projection in the rat: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J. Comp. Neurol. 286, 427–441 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Habas, C. & Cabanis, E. A. Cortical projections to the human red nucleus: a diffusion tensor tractography study with a 1.5-T MRI machine. Neuroradiology 48, 755–762 (2006).

    Article  PubMed  Google Scholar 

  • Tervo, D. G. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami, T., Matsui, T., Uemura, M. & Ohki, K. Modular strategy for development of the hierarchical visual network in mice. Nature 608, 578–585 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Tang, L. & Higley, M. J. Layer 5 circuits in V1 differentially control visuomotor behavior. Neuron 105, 346–354.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, N. et al. Active dendritic currents gate descending cortical outputs in perception. Nat. Neurosci. 23, 1277–1285 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Fuster, J. M. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (Raven, 1980).

  • Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Oswald, M. J., Tantirigama, M. L., Sonntag, I., Hughes, S. M. & Empson, R. M. Diversity of layer 5 projection neurons in the mouse motor cortex. Front. Cell Neurosci. 7, 174 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Akintunde, A. & Buxton, D. F. Origins and collateralization of corticospinal, corticopontine, corticorubral and corticostriatal tracts: a multiple retrograde fluorescent tracing study. Brain Res. 586, 208–218 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Harris, K. D. & Shepherd, G. M. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musall, S. et al. Pyramidal cell types drive functionally distinct cortical activity patterns during decision-making. Nat. Neurosci. 26, 495–505 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan, H. et al. Cortical glutamatergic projection neuron types contribute to distinct functional subnetworks. Nat. Neurosci. 26, 481–494 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuramoto, E. et al. Ventral medial nucleus neurons send thalamocortical afferents more widely and more preferentially to layer 1 than neurons of the ventral anterior–ventral lateral nuclear complex in the rat. Cereb. Cortex 25, 221–235 (2015).

    Article  PubMed  Google Scholar 

  • Cruikshank, S. J. et al. Thalamic control of layer 1 circuits in prefrontal cortex. J. Neurosci. 32, 17813–17823 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder, A. et al. Inhibitory top-down projections from zona incerta mediate neocortical memory. Neuron 111, 727–738.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Ahmadlou, M. et al. A cell type-specific cortico-subcortical brain circuit for investigatory and novelty-seeking behavior. Science 372, eabe9681 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Brenner, J. M., Beltramo, R., Gerfen, C. R., Ruediger, S. & Scanziani, M. A genetically defined tecto-thalamic pathway drives a system of superior-colliculus-dependent visual cortices. Neuron 111, 2247–2257.e7 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Guo, Z. V. et al. Maintenance of persistent activity in a frontal thalamocortical loop. Nature 545, 181–186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao, K. et al. A thalamic orphan receptor drives variability in short-term memory. Cell 183, 522–536.e19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redinbaugh, M. J. et al. Thalamus modulates consciousness via layer-specific control of cortex. Neuron 106, 66–75.e12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aru, J., Suzuki, M. & Larkum, M. E. Cellular mechanisms of conscious processing. Trends Cogn. Sci. 24, 814–825 (2020).

    Article  PubMed  Google Scholar 

  • Aru, J., Suzuki, M., Rutiku, R., Larkum, M. E. & Bachmann, T. Coupling the state and contents of consciousness. Front. Syst. Neurosci. 13, 43 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki, M. & Larkum, M. E. General anesthesia decouples cortical pyramidal neurons. Cell 180, 666–676.e13 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Schiff, N. D. et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448, 600–603 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Bastos, A. M. et al. Neural effects of propofol-induced unconsciousness and its reversal using thalamic stimulation. eLife 10, e60824 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crick, F. C. & Koch, C. What is the function of the claustrum. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1271–1279 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chevee, M., Finkel, E. A., Kim, S. J., O’Connor, D. H. & Brown, S. P. Neural activity in the mouse claustrum in a cross-modal sensory selection task. Neuron 110, 486–501.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Huang, W., Qin, J., Zhang, C., Qin, H. & Xie, P. Footshock-induced activation of the claustrum–entorhinal cortical pathway in freely moving mice. Physiol. Res. 71, 695–701 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smythies, J. On the function of object cells in the claustrum—key components in information processing in the visual system? Front. Cell Neurosci. 9, 443 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsumoto, T. & Suda, K. Effects of stimulation of the dorsocaudal claustrum on activities of striate cortex neurons in the cat. Brain Res. 240, 345–349 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Remedios, R., Logothetis, N. K. & Kayser, C. A role of the claustrum in auditory scene analysis by reflecting sensory change. Front. Syst. Neurosci. 8, 44 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Qadir, H. et al. The mouse claustrum synaptically connects cortical network motifs. Cell Rep. 41, 111860 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, N. L. et al. Structural connections between the noradrenergic and cholinergic system shape the dynamics of functional brain networks. Neuroimage 260, 119455 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Deutch, A. Y. & Roth, R. H. in Fundamental Neuroscience (eds M. J. Zigmond et al.) 193–234 (Academic, 1999).

  • Chevalier, G. & Deniau, J. M. Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci. 13, 277–280 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Voorn, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W. & Pennartz, C. M. Putting a spin on the dorsal–ventral divide of the striatum. Trends Neurosci. 27, 468–474 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Budinger, E., Heil, P., Hess, A. & Scheich, H. Multisensory processing via early cortical stages: connections of the primary auditory cortical field with other sensory systems. Neuroscience 143, 1065–1083 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Benavidez, N. L. et al. Organization of the inputs and outputs of the mouse superior colliculus. Nat. Commun. 12, 4004 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltramo, R. & Scanziani, M. A collicular visual cortex: neocortical space for an ancient midbrain visual structure. Science 363, 64–69 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Constantinople, C. M. & Bruno, R. M. Effects and mechanisms of wakefulness on local cortical networks. Neuron 69, 1061–1068 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aru, J., Siclari, F., Phillips, W. A. & Storm, J. F. Apical drive—a cellular mechanism of dreaming? Neurosci. Biobehav. Rev. 119, 440–455 (2020).

    Article  PubMed  Google Scholar 

  • Wainstein, G., Muller, E. J., Taylor, N., Munn, B. & Shine, J. M. The role of the locus coeruleus in shaping adaptive cortical melodies. Trends Cogn. Sci. 26, 527–538 (2022).

    Article  PubMed  Google Scholar 

  • Polack, P. O., Friedman, J. & Golshani, P. Cellular mechanisms of brain state-dependent gain modulation in visual cortex. Nat. Neurosci. 16, 1331–1339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris, K. D. & Thiele, A. Cortical state and attention. Nat. Rev. Neurosci. 12, 509–523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parikh, V., Kozak, R., Martinez, V. & Sarter, M. Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56, 141–154 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puig, M. V. & Gulledge, A. T. Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol. Neurobiol. 44, 449–464 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buhot, M. C., Martin, S. & Segu, L. Role of serotonin in memory impairment. Ann. Med. 32, 210–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Petroni, F., Panzeri, S., Hilgetag, C. C., Kotter, R. & Young, M. P. Simultaneity of responses in a hierarchical visual network. Neuroreport 12, 2753–2759 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Zeki, S. The rough seas of cortical cartography. Trends Neurosci. 41, 242–244 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Silvanto, J. Why is “blindsight” blind? A new perspective on primary visual cortex, recurrent activity and visual awareness. Conscious. Cogn. 32, 15–32 (2015).

    Article  PubMed  Google Scholar 

  • Schmolesky, M. T. et al. Signal timing across the macaque visual system. J. Neurophysiol. 79, 3272–3278 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Bullier, J. & Nowak, L. G. Parallel versus serial processing: new vistas on the distributed organization of the visual system. Curr. Opin. Neurobiol. 5, 497–503 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Douglas, R. J. & Martin, K. A. Mapping the matrix: the ways of neocortex. Neuron 56, 226–238 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Rockland, K. S. & Ichinohe, N. Some thoughts on cortical minicolumns. Exp. Brain Res. 158, 265–277 (2004).

    Article  PubMed  Google Scholar 

  • Molnár, Z. & Rockland, K. S. in Neural Circuit and Cognitive Development Ch. 5 (eds J. Rubenstein, P. Rakic, B. Chen & K. Y. Kwan) 103–126 (Academic, 2020).

  • Trojanowski, J. Q. & Jacobson, S. Medial pulvinar afferents to frontal eye fields in rhesus monkey demonstrated by horseradish peroxidase. Brain Res. 80, 395–411 (1974).

    Article  CAS  PubMed  Google Scholar 

  • Baizer, J. S., Desimone, R. & Ungerleider, L. G. Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys. Vis. Neurosci. 10, 59–72 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Stanton, G. B., Goldberg, M. E. & Bruce, C. J. Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic terminal fields. J. Comp. Neurol. 271, 473–492 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Lynch, J. C., Hoover, J. E. & Strick, P. L. Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Exp. Brain Res. 100, 181–186 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Berman, R. A. & Wurtz, R. H. Exploring the pulvinar path to visual cortex. Prog. Brain Res. 171, 467–473 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huerta, M. F., Krubitzer, L. A. & Kaas, J. H. Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. Subcortical connections. J. Comp. Neurol. 253, 415–439 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Leichnetz, G. R., Smith, D. J. & Spencer, R. F. Cortical projections to the paramedian tegmental and basilar pons in the monkey. J. Comp. Neurol. 228, 388–408 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Andersen, R. A., Asanuma, C., Essick, G. & Siegel, R. M. Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J. Comp. Neurol. 296, 65–113 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Lynch, J. C., Graybiel, A. M. & Lobeck, L. J. The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus. J. Comp. Neurol. 235, 241–254 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Schall, J. D., Morel, A., King, D. J. & Bullier, J. Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J. Neurosci. 15, 4464–4487 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernet, M., Quentin, R., Chanes, L., Mitsumasu, A. & Valero-Cabre, A. Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Front. Integr. Neurosci. 8, 66 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Yttri, E. A. & Snyder, L. H. Intention and attention: different functional roles for LIPd and LIPv. Nat. Neurosci. 13, 495–500 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coe, B. C. & Munoz, D. P. Mechanisms of saccade suppression revealed in the anti-saccade task. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160192 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Milardi, D. et al. Red nucleus connectivity as revealed by constrained spherical deconvolution tractography. Neurosci. Lett. 626, 68–73 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Na, J., Kakei, S. & Shinoda, Y. Cerebellar input to corticothalamic neurons in layers V and VI in the motor cortex. Neurosci. Res. 28, 77–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Gonzalez, C., Bolam, J. P. & Mena-Segovia, J. Topographical organization of the pedunculopontine nucleus. Front. Neuroanat. 5, 22 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherman, S. M. & Guillery, R. W. Distinct functions for direct and transthalamic corticocortical connections. J. Neurophysiol. 106, 1068–1077 (2011).

    Article  PubMed  Google Scholar 

  • de Kock, C. P., Bruno, R. M., Spors, H. & Sakmann, B. Layer- and cell-type-specific suprathreshold stimulus representation in rat primary somatosensory cortex. J. Physiol. 581, 139–154 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Masamizu, Y. et al. Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task. Nat. Neurosci. 17, 987–994 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Guo, K., Yamawaki, N., Svoboda, K. & Shepherd, G. M. G. Anterolateral motor cortex connects with a medial subdivision of ventromedial thalamus through cell type-specific circuits, forming an excitatory thalamo-cortico-thalamic loop via layer 1 apical tuft dendrites of layer 5b pyramidal tract type neurons. J. Neurosci. 38, 8787–8797 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharioke, A. et al. General anesthesia globally synchronizes activity selectively in layer 5 cortical pyramidal neurons. Neuron 110, 2024–2040.e10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkum, M. A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci. 36, 141–151 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Brea, J., Gaal, A. T., Urbanczik, R. & Senn, W. Prospective coding by spiking neurons. PLoS Comput. Biol. 12, e1005003 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Roelfsema, P. R. & Holtmaat, A. Control of synaptic plasticity in deep cortical networks. Nat. Rev. Neurosci. 19, 166–180 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G. Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Whittington, J. C. R. & Bogacz, R. Theories of error back-propagation in the brain. Trends Cogn. Sci. 23, 235–250 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong, Q., Znamenskiy, P. & Zador, A. M. Selective corticostriatal plasticity during acquisition of an auditory discrimination task. Nature 521, 348–351 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox, J. & Witten, I. B. Striatal circuits for reward learning and decision-making. Nat. Rev. Neurosci. 20, 482–494 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, J. M. et al. Deep and superficial layers of the primary somatosensory cortex are critical for whisker-based texture discrimination in mice. Preprint at bioRxiv https://doi.org/10.1101/2020.08.12.245381 (2022).

  • Hong, Y. K., Lacefield, C. O., Rodgers, C. C. & Bruno, R. M. Sensation, movement and learning in the absence of barrel cortex. Nature 561, 542–546 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Neumann, J. The Computer and the Brain (Yale Univ. Press, 1958).

  • Mo, C. & Sherman, S. M. A sensorimotor pathway via higher-order thalamus. J. Neurosci. 39, 692–704 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lake, B. M., Ullman, T. D., Tenenbaum, J. B. & Gershman, S. J. Building machines that learn and think like people. Behav. Brain Sci. 40, e253 (2017).

    Article  PubMed  Google Scholar 

  • Baroni, M. Linguistic generalization and compositionality in modern artificial neural networks. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190307 (2020).

    Article  PubMed  Google Scholar 

  • Ruediger, S. & Scanziani, M. Learning speed and detection sensitivity controlled by distinct cortico-fugal neurons in visual cortex. eLife 9, e59247 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks, R. A. A robust layered control-system for a mobile robot. IEEE T Robotic Autom. 2, 14–23 (1986).

    Article  Google Scholar 

  • Brooks, R. A. New approaches to robotics. Science 253, 1227–1232 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Haider, P., Ellenberger, B., Kriener, L., Jordan, J., Senn, W. & Petrovici, M. A. Latent equilibrium: a unified learning theory for arbitrarily fast computation with arbitrarily slow neurons. Adv. Neural Inf. Process. Syst. 34, 17839–17851 (2021).

    Google Scholar 

  • Narayanan, R. T. et al. Beyond columnar organization: cell type- and target layer-specific principles of horizontal axon projection patterns in rat vibrissal cortex. Cereb. Cortex 25, 4450–4468 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, G., Scherr, F. & Maass, W. A data-based large-scale model for primary visual cortex enables brain-like robust and versatile visual processing. Sci. Adv. 8, eabq7592 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Guest, J. M., Bast, A., Narayanan, R. T. & Oberlaender, M. Thalamus gates active dendritic computations in cortex during sensory processing. Preprint at bioRxiv https://doi.org/10.1101/2021.10.21.465325 (2021).

  • Constantinople, C. M. & Bruno, R. M. Deep cortical layers are activated directly by thalamus. Science 340, 1591–1594 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pluta, S. et al. A direct translaminar inhibitory circuit tunes cortical output. Nat. Neurosci. 18, 1631–1640 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart, G., Spruston, N. & Häusser, M. Dendrites 3rd edn (Oxford Univ. Press, 2016).

  • Major, G., Larkum, M. E. & Schiller, J. Active properties of neocortical pyramidal neuron dendrites. Annu. Rev. Neurosci. 36, 1–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Mikulasch, F. A., Rudelt, L., Wibral, M. & Priesemann, V. Where is the error? Hierarchical predictive coding through dendritic error computation. Trends Neurosci. 46, 45–59 (2022).

    Article  PubMed  Google Scholar 

  • Richards, B. A. & Lillicrap, T. P. Dendritic solutions to the credit assignment problem. Curr. Opin. Neurobiol. 54, 28–36 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Guerguiev, J., Lillicrap, T. P. & Richards, B. A. Towards deep learning with segregated dendrites. eLife 6, e22901 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawkins, J. & Ahmad, S. Why neurons have thousands of synapses, a theory of sequence memory in neocortex. Front. Neural Circuits 10, 23 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiess, M., Urbanczik, R. & Senn, W. Somato-dendritic synaptic plasticity and error-backpropagation in active dendrites. PLoS Comput. Biol. 12, e1004638 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Poirazi, P. & Papoutsi, A. Illuminating dendritic function with computational models. Nat. Rev. Neurosci. 21, 303–321 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Beniaguev, D., Segev, I. & London, M. Single cortical neurons as deep artificial neural networks. Neuron 109, 2727–2739.e3 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Cossell, L. et al. Functional organization of excitatory synaptic strength in primary visual cortex. Nature 518, 399–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeman, S. C. et al. Sparse recurrent excitatory connectivity in the microcircuit of the adult mouse and human cortex. eLife 7, e37349 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Garner, A. R. & Keller, G. B. A cortical circuit for audio-visual predictions. Nat. Neurosci. 25, 98–105 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Ghazanfar, A. A. & Schroeder, C. E. Is neocortex essentially multisensory? Trends Cogn. Sci. 10, 278–285 (2006).

    Article  PubMed  Google Scholar 

  • Fetsch, C. R., DeAngelis, G. C. & Angelaki, D. E. Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons. Nat. Rev. Neurosci. 14, 429–442 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Graybiel, A. M. The basal ganglia. Curr. Biol. 10, R509–R511 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Parent, A. et al. Organization of the basal ganglia: the importance of axonal collateralization. Trends Neurosci. 23, S20–S27 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Takakusaki, K., Saitoh, K., Harada, H. & Kashiwayanagi, M. Role of basal ganglia–brainstem pathways in the control of motor behaviors. Neurosci. Res. 50, 137–151 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Graybiel, A. M., Aosaki, T., Flaherty, A. W. & Kimura, M. The basal ganglia and adaptive motor control. Science 265, 1826–1831 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Roseberry, T. K. et al. Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell 164, 526–537 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parent, M., Levesque, M. & Parent, A. Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. J. Comp. Neurol. 439, 162–175 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Parent, M. & Parent, A. The pallidofugal motor fiber system in primates. Parkinsonism Relat. Disord. 10, 203–211 (2004).

    Article  PubMed  Google Scholar 

  • Pennartz, C. M., Groenewegen, H. J. & Lopes da Silva, F. H. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog. Neurobiol. 42, 719–761 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Di Chiara, G., Porceddu, M. L., Morelli, M., Mulas, M. L. & Gessa, G. L. Evidence for a GABAergic projection from the substantia nigra to the ventromedial thalamus and to the superior colliculus of the rat. Brain Res. 176, 273–284 (1979).

    Article  PubMed  Google Scholar 

  • Williams, L. E. & Holtmaat, A. Higher-order thalamocortical inputs gate synaptic long-term potentiation via disinhibition. Neuron 101, 91–102.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Gambino, F. et al. Sensory-evoked LTP driven by dendritic plateau potentials in vivo. Nature 515, 116–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Anastasiades, P. G., Collins, D. P. & Carter, A. G. Mediodorsal and ventromedial thalamus engage distinct L1 circuits in the prefrontal cortex. Neuron 109, 314–330.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Schmitt, L. I. et al. Thalamic amplification of cortical connectivity sustains attentional control. Nature 545, 219–223 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inagaki, H. K. et al. A midbrain–thalamus–cortex circuit reorganizes cortical dynamics to initiate movement. Cell 185, 1065–1081.e23 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, M. B. & Halassa, M. M. Thalamocortical contribution to flexible learning in neural systems. Netw. Neurosci. 6, 980–997 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • La Terra, D. et al. The role of higher-order thalamus during learning and correct performance in goal-directed behavior. eLife 11, e77177 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruis, L., Andreas, J., Baroni, M., Bouchacourt, D. & Lake, B. M. A benchmark for systematic generalization in grounded language understanding. In Proc. 34th Int. Conf. Neural Information Processing Systems (eds. Larochelle, H. et al.) 19861–19872 (Curran, 2020).

  • Lake, B. M. & Baroni, M. Generalization without systematicity: on the compositional skills of sequence-to-sequence recurrent networks. In Int. Conf. Machine Learning (eds. Dy, J. & Krause, A.) 2879–2888 (2018).

  • Pfeiffer, J., Ruder, S., Vulić, I. & Ponti, E. M. Modular deep learning. Preprint at arXiv https://doi.org/10.48550/arXiv.2302.11529 (2023).

  • Goyal, A. et al. Recurrent independent mechanisms. Preprint at arXiv https://doi.org/10.48550/arXiv.1909.10893 (2020).

  • Albright, T. D., Jessell, T. M., Kandel, E. R. & Posner, M. I. Neural science: a century of progress and the mysteries that remain. Neuron 25, S1–S55 (2000).

    Article  PubMed  Google Scholar 

  • Wallis, J. D., Anderson, K. C. & Miller, E. K. Single neurons in prefrontal cortex encode abstract rules. Nature 411, 953–956 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Verschure, P. F., Pennartz, C. M. & Pezzulo, G. The why, what, where, when and how of goal-directed choice: neuronal and computational principles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130483 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Dias, R., Robbins, T. W. & Roberts, A. C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380, 69–72 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Wilson, R. C., Takahashi, Y. K., Schoenbaum, G. & Niv, Y. Orbitofrontal cortex as a cognitive map of task space. Neuron 81, 267–279 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I. & Posner, M. I. The activation of attentional networks. Neuroimage 26, 471–479 (2005).

    Article  PubMed  Google Scholar 

  • Womelsdorf, T. & Everling, S. Long-range attention networks: circuit motifs underlying endogenously controlled stimulus selection. Trends Neurosci. 38, 682–700 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Cohen, M. R. & Maunsell, J. H. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12, 1594–1600 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds, J. H. & Desimone, R. Interacting roles of attention and visual salience in V4. Neuron 37, 853–863 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Poort, J. et al. The role of attention in figure-ground segregation in areas V1 and V4 of the visual cortex. Neuron 75, 143–156 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Reep, R. L. & Corwin, J. V. Posterior parietal cortex as part of a neural network for directed attention in rats. Neurobiol. Learn. Mem. 91, 104–113 (2009).

    Article  PubMed  Google Scholar 

  • Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X. & Kastner, S. The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337, 753–756 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rikhye, R. V., Gilra, A. & Halassa, M. M. Thalamic regulation of switching between cortical representations enables cognitive flexibility. Nat. Neurosci. 21, 1753–1763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Werf, Y. D., Witter, M. P. & Groenewegen, H. J. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Brain Res. Rev. 39, 107–140 (2002).

    Article  PubMed  Google Scholar 

  • Groenewegen, H. J. & Berendse, H. W. The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci. 17, 52–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Breton-Provencher, V., Drummond, G. T., Feng, J., Li, Y. & Sur, M. Spatiotemporal dynamics of noradrenaline during learned behaviour. Nature 606, 732–738 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, J. et al. Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell 175, 472–487.e20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohani, S. et al. Spatiotemporally heterogeneous coordination of cholinergic and neocortical activity. Nat. Neurosci. 25, 1706–1713 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Morris, L. S. et al. Fronto-striatal organization: defining functional and microstructural substrates of behavioural flexibility. Cortex 74, 118–133 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Apicella, P., Legallet, E., Nieoullon, A. & Trouche, E. Neglect of contralateral visual stimuli in monkeys with unilateral striatal dopamine depletion. Behav. Brain Res. 46, 187–195 (1991).

    Article  CAS  PubMed  Google Scholar