On the conditions for mimicking natural selection in chemical systems

9 min read Original article ↗
  • Darwin, C. On the Origin of Species (Harvard Univ. Press, 1859).

  • Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids - a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  Google Scholar 

  • Barboiu, M. Dynamic interactive systems: dynamic selection in hybrid organic–inorganic constitutional networks. Chem. Commun. 46, 7466–7476 (2010).

    Article  CAS  Google Scholar 

  • Wicken, J. S. An organismic critique of molecular darwinism. J. Theor. Biol. 117, 545–561 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Sharp, P. M. In search of molecular darwinism. Nature 385, 111–112 (1997).

    PubMed  Google Scholar 

  • Huc, I. & Lehn, J.-M. Virtual combinatorial libraries: dynamic generation of molecular and supramolecular diversity by self-assembly. Proc. Natl Acad. Sci. USA 94, 2106–2110 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann-Pillath, C. Entropy, function and evolution: naturalizing peircian semiosis. Entropy 12, 197–242 (2010).

    Article  Google Scholar 

  • Popa, R. Necessity, futility and the possibility of defining life are all embedded in its origin as a punctuated-gradualism. Orig. Life Evol. Biosph. 40, 183–190 (2010).

    Article  PubMed  Google Scholar 

  • Depew, D. J. & Weber, B. H. The fate of darwinism: evolution after the modern synthesis. Biol. Theory 6, 89–102 (2011).

    Article  Google Scholar 

  • Saladino, R. et al. Chemomimesis and molecular Darwinism in action: from abiotic generation of nucleobases to nucleosides and RNA. Life 8, 24 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  • Lewis, G. N. A new principle of equilibrium. Proc. Natl Acad. Sci. USA 11, 179–183 (1925).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Van Esch, J. H., Klajn, R. & Otto, S. Chemical systems out of equilibrium. Chem. Soc. Rev. 46, 5474–5475 (2017).

    Article  PubMed  Google Scholar 

  • Grzybowski, B. A., Fitzner, K., Paczesny, J. & Granick, S. From dynamic self-assembly to networked chemical systems. Chem. Soc. Rev. 46, 5647–5678 (2017).

    Article  CAS  PubMed  Google Scholar 

  • van Rossum, S. A. P. A., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).

    Article  PubMed  Google Scholar 

  • Astumian, R. D. Trajectory and cycle-based thermodynamics and kinetics of molecular machines: the importance of microscopic reversibility. Acc. Chem. Res. 51, 2653–2661 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Demetrius, L. Directionality principles in thermodynamics and evolution. Proc. Natl Acad. Sci. USA 94, 3491–3498 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pross, A. & Khodorkovsky, V. Extending the concept of kinetic stability: toward a paradigm for life. J. Phys. Org. Chem. 17, 312–316 (2004).

    Article  CAS  Google Scholar 

  • Pross, A. What is Life? (Oxford Univ. Press, 2016).

  • Pross, A. Seeking the chemical roots of Darwinism: bridging between chemistry and biology. Chem. Eur. J. 15, 8374–8381 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Pascal, R. & Pross, A. Chemistry’s kinetic dimension and the physical basis for life. J. Syst. Chem. 7, 1–8 (2019).

    Google Scholar 

  • Pascal, R. & Pross, A. Stability and its manifestation in the chemical and biological worlds. Chem. Commun. 51, 16160–16165 (2015).

    Article  CAS  Google Scholar 

  • Pascal, R. Suitable energetic conditions for dynamic chemical complexity and the living state. J. Syst. Chem. 3, 3 (2012).

    Article  CAS  Google Scholar 

  • Pascal, R., Pross, A. & Sutherland, J. D. Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics. Open Biol. 3, 130156 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pross, A. & Pascal, R. How and why kinetics, thermodynamics, and chemistry induce the logic of biological evolution. Beilstein J. Org. Chem. 13, 665–674 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehn, J.-M. Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem. Eur. J. 5, 2455–2463 (1999).

    Article  CAS  Google Scholar 

  • Cousins, G. R. L., Poulsen, S.-A. & Sanders, J. K. M. Molecular evolution: dynamic combinatorial libraries, autocatalytic networks and the quest for molecular function. Curr. Opin. Chem. Biol. 4, 270–279 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Rozenman, M. M., McNaughton, B. R. & Liu, D. R. Solving chemical problems through the application of evolutionary principles. Curr. Opin. Chem. Biol. 11, 259–268 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Mirazo, K., Pereto, J. & Moreno, A. A universal definition of life: autonomy and open-ended evolution. Orig. Life Evol. Biosph. 34, 323–346 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Lotka, A. J. Natural selection as a physical principle. Proc. Natl Acad. Sci. USA 8, 151–154 (1922).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills, D. R., Peterson, R. L. & Spiegelman, S. An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule. Proc. Natl Acad. Sci. USA 58, 217–224 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orgel, L. E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 39, 99–123 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971).

    Article  CAS  PubMed  Google Scholar 

  • Eigen, M. & Schuster, P. The hypercycle. A principle of natural self-organization. Part A. The emergence of the hypercycle. Naturwissenschaften 64, 541–565 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Szathmáry, E. & Gladkih, I. Sub-exponential growth and coexistence of non-enzymatically replicating templates. J. Theor. Biol. 138, 55–58 (1989).

    Article  PubMed  Google Scholar 

  • von Kiedrowski, G. A self-replicating hexadeoxynucleotide. Angew. Chem. Int. Ed. Engl. 25, 932–935 (1986).

    Article  Google Scholar 

  • Prigogine, I. Time, structure and fluctuations. Science 201, 777–785 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Zachar, I. & Szathmáry, E. A new replicator: a theoretical framework for analysing replication. BMC Biol. 8, 21–21 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sutherland, J. Opinion: Studies on the origin of life — the end of the beginning. Nat. Rev. Chem. 1, 0012 (2017).

    Article  CAS  Google Scholar 

  • Peretó, J. in Handbook of Astrobiology Ch. 5.1 (ed. Kolb, V. M.) 219–233 (CRC, 2019).

  • Ruiz-Mirazo, K., Briones, C. & de la Escosura, A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Pascal, R. in Astrochemistry and Astrobiology: Physical Chemistry in Action (eds Smith, I. W. M., Cockell C. & Leach S.) 243–269 (Springer, 2013).

  • Jencks, W. P. in Handbook of Biochemistry and Molecular Biology 3rd edn Vol. I (ed. Fasman, G. D.) 296–304 (CRC, 1976).

  • Pross, A. The evolutionary origin of biological function and complexity. J. Mol. Evol. 76, 185–191 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Astumian, R. D. & Robertson, B. Imposed oscillations of kinetic barriers can cause an enzyme to drive a chemical reaction away from equilibrium. J. Am. Chem. Soc. 115, 11063–11068 (1993).

    Article  CAS  Google Scholar 

  • Kreysing, M., Keil, L., Lanzmich, S. & Braun, D. Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length. Nat. Chem. 7, 203–208 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Colomb-Delsuc, M., Mattia, E., Sadownik, J. W. & Otto, S. Exponential self-replication enabled through a fibre elongation/breakage mechanism. Nat. Commun. 6, 7427 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Duval, S. et al. Fougerite: the not so simple progenitor of the first cells. Interface Focus 9, 20190063 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • England, J. L. Statistical physics of self-replication. J. Chem. Phys. 139, 121923 (2013).

    Article  PubMed  CAS  Google Scholar 

  • Martyushev, L. M. & Seleznev, V. D. Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006).

    Article  CAS  Google Scholar 

  • Ross, J., Corlan, A. D. & Müller, S. C. Proposed principles of maximum local entropy production. J. Phys. Chem. B 116, 7858–7865 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Wells, T. N. C., Ho, C. K. & Fersht, A. R. Free energy of hydrolysis of tyrosyl adenylate and its binding to wild-type and engineered mutant tyrosyl-tRNA synthetases. Biochemistry 25, 6603–6608 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Cramer, F. & Freist, W. Molecular recognition by energy dissipation, a new enzymatic principle: the example isoleucine-valine. Acc. Chem. Res. 20, 79–84 (1987).

    Article  CAS  Google Scholar 

  • Mitchell, P. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. Eur. J. Biochem. 95, 1–20 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Dibrova, D. V., Galperin, M. Y., Koonin, E. V. & Mulkidjanian, A. Y. Ancient systems of sodium/potassium homeostasis as predecessors of membrane bioenergetics. Biochemistry 80, 495–516 (2015).

    CAS  PubMed  Google Scholar 

  • Pascal, R. & Boiteau, L. Energy flows, metabolism and translation. Phil. Trans. R. Soc. Lond. B Biol. Sci. 366, 2949–2958 (2011).

    Article  CAS  Google Scholar 

  • Lineweaver, C. H. & Egan, C. A. Life, gravity and the second law of thermodynamics. Phys. Life Rev. 5, 225–242 (2008).

    Article  Google Scholar 

  • Pascal, R. Kinetic barriers and the self-organization of life. Isr. J. Chem. 55, 865–874 (2015).

    Article  CAS  Google Scholar 

  • Wolfenden, R. Primordial chemistry and enzyme evolution in a hot environment. Cell. Mol. Life Sci. 71, 2909–2915 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148 (1961).

    Article  CAS  PubMed  Google Scholar 

  • Eschenmoser, A. Chemistry of potentially prebiological natural products. Orig. Life Evol. Biosph. 24, 389–423 (1994).

    Article  CAS  Google Scholar 

  • Eschenmoser, A. Etiology of potentially primordial biomolecular structures: from vitamin B12 to the nucleic acids and an inquiry into the chemistry of life’s origin: a retrospective. Angew. Chem. Int. Ed. 50, 12412–12472 (2011).

    Article  CAS  Google Scholar 

  • Westheimer, F. H. Why nature chose phosphate. Science 235, 1173–1178 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Pascal, R., Taillades, J. & Commeyras, A. Systèmes de Strecker et apparentés—XII: Catalyse par les aldéhydes de l’hydratation intramoléculaire des α-aminonitriles. Tetrahedron 36, 2999–3008 (1980).

    Article  CAS  Google Scholar 

  • Canavelli, P., Islam, S. & Powner, M. Peptide ligation by chemoselective aminonitrile coupling in water. Nature 571, 546–549 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker, S. I. The new physics needed to probe the origins of life. Nature 569, 36–38 (2019).

    Article  CAS  Google Scholar 

  • Vasas, V., Szathmáry, E. & Santos, M. Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life. Proc. Natl Acad. Sci. USA 107, 1470–1475 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasas, V., Fernando, C., Santos, M., Kauffman, S. & Szathmáry, E. Evolution before genes. Biol. Direct 7, 1 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Segré, D., Ben-Eli, D. & Lancet, D. Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc. Natl Acad. Sci. USA 97, 4112–4117 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lahav, N., White, D. & Chang, S. Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments. Science 201, 67–69 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Olasagasti, F., Kim, H. J., Pourmand, N. & Deamer, D. W. Non-enzymatic transfer of sequence information under plausible prebiotic conditions. Biochimie 93, 556–561 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Campbell, T. D. et al. Prebiotic condensation through wet–dry cycling regulated by deliquescence. Nat. Commun. 10, 4508 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar