Flexoelectricity and surface ferroelectricity of water ice

9 min read Original article ↗

References

  1. Bartels-Rausch, T. et al. Ice structures, patterns, and processes: a view across the icefields. Rev. Mod. Phys. 84, 885–944 (2012).

    Article  ADS  Google Scholar 

  2. Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339–1342 (2018).

    Article  ADS  Google Scholar 

  3. Ball, P. Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008).

    Article  Google Scholar 

  4. Wang, Y.-H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).

    Article  ADS  Google Scholar 

  5. Petrenko, V. F. & Whitworth, R. W. Physics of Ice (OUP Oxford, 1999).

  6. Salzmann, C. G. Advances in the experimental exploration of water’s phase diagram. J. Chem. Phys. 150, 060901 (2019).

    Article  ADS  Google Scholar 

  7. Rosu-Finsen, A. et al. Medium-density amorphous ice. Science 379, 474–478 (2023).

    Article  ADS  Google Scholar 

  8. Xu, P. et al. Elastic ice microfibers. Science 373, 187–192 (2021).

    Article  ADS  Google Scholar 

  9. Saunders, C. in Planetary Atmospheric Electricity (eds LeBlanc, F. et al.) 335–353 (Springer, 2008); https://doi.org/10.1007/978-0-387-87664-1_22

  10. Dash, J. G., Rempel, A. W. & Wettlaufer, J. S. The physics of premelted ice and its geophysical consequences. Rev. Mod. Phys. 78, 695–741 (2006).

    Article  ADS  Google Scholar 

  11. Thiel, D. V. Electromagnetic emission (EME) from ice crack formation: preliminary observations. Cold Reg. Sci. Technol. 21, 49–60 (1992).

    Article  Google Scholar 

  12. Fifolt, D. A., Petrenko, V. F. & Schulson, E. M. Preliminary study of electromagnetic emissions from cracks in ice. Philos. Mag. B 67, 289–299 (1993).

    Article  ADS  Google Scholar 

  13. Zubko, P., Catalan, G. & Tagantsev, A. K. Flexoelectric effect in solids. Annu Rev. Mater. Sci. 43, 387–421 (2013).

    Article  ADS  Google Scholar 

  14. Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012).

    Article  ADS  Google Scholar 

  15. Deng, Q., Liu, L. P. & Sharma, P. Flexoelectricity in soft materials and biological membranes. J. Mech. Phys. Solids 62, 209–227 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  16. Narvaez, J., Vasquez-Sancho, F. & Catalan, G. Enhanced flexoelectric-like response in oxide semiconductors. Nature 538, 219–221 (2016).

    Article  ADS  Google Scholar 

  17. Yang, M. M., Kim, D. J. & Alexe, M. Flexo-photovoltaic effect. Science 360, 904–907 (2018).

    Article  ADS  Google Scholar 

  18. Vasquez-Sancho, F., Abdollahi, A., Damjanovic, D. & Catalan, G. Flexoelectricity in bones. Adv. Mater. 30, 1705316 (2018).

    Article  Google Scholar 

  19. Shu, L. et al. Photoflexoelectric effect in halide perovskites. Nat. Mater. 19, 605–609 (2020).

    Article  ADS  Google Scholar 

  20. Torbati, M., Mozaffari, K., Liu, L. & Sharma, P. Coupling of mechanical deformation and electromagnetic fields in biological cells. Rev. Mod. Phys. 94, 025003 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  21. Peng, W. et al. Flexoelectric polarizing and control of a ferromagnetic metal. Nat. Phys. 20, 450–455 (2024).

    Article  Google Scholar 

  22. Slater, B. & Michaelides, A. Surface premelting of water ice. Nat. Rev. Chem. 3, 172–188 (2019).

    Article  Google Scholar 

  23. Ribeiro, I. D. A. & Koning, M. D. Grain-boundary sliding in ice Ih: tribology and rheology at the nanoscale. J. Phys. Chem. C 125, 627–634 (2021).

    Article  Google Scholar 

  24. Ma, Q., Wen, X., Lv, L., Deng, Q. & Shen, S. On the flexoelectric-like effect of Nb-doped SrTiO3 single crystals. Appl. Phys. Lett. 123, 082902 (2023).

    Article  ADS  Google Scholar 

  25. Zubko, P., Catalan, G., Buckley, A., Welche, P. R. & Scott, J. F. Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007).

    Article  ADS  Google Scholar 

  26. Vales-Castro, P. et al. Flexoelectricity in antiferroelectrics. Appl. Phys. Lett. https://doi.org/10.1063/1.5044724 (2018).

  27. Ma, W. & Cross, L. E. Flexoelectricity of barium titanate. Appl Phys. Lett. 88, 232902 (2006).

    Article  ADS  Google Scholar 

  28. Narvaez, J. & Catalan, G. Origin of the enhanced flexoelectricity of relaxor ferroelectrics. Appl. Phys. Lett. https://doi.org/10.1063/1.4871686 (2014).

  29. Mishima, O., Calvert, L. & Whalley, E. ‘Melting ice’I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310, 393–395 (1984).

    Article  ADS  Google Scholar 

  30. Garg, A. K. High-pressure Raman spectroscopic study of the ice Ih → ice IX phase transition. Phys. Status Solidi a 110, 467–480 (1988).

    Article  ADS  Google Scholar 

  31. Su, X. C., Lianos, L., Shen, Y. R. & Somorjai, G. A. Surface-induced ferroelectric ice on Pt(111). Phys. Rev. Lett. 80, 1533–1536 (1998).

    Article  ADS  Google Scholar 

  32. Sugimoto, T., Aiga, N., Otsuki, Y., Watanabe, K. & Matsumoto, Y. Emergent high-Tc ferroelectric ordering of strongly correlated and frustrated protons in a heteroepitaxial ice film. Nat. Phys. 12, 1063–1068 (2016).

    Article  Google Scholar 

  33. Aiga, N., Sugimoto, T., Otsuki, Y., Watanabe, K. & Matsumoto, Y. Origins of emergent high-Tc ferroelectric ordering in heteroepitaxial ice films: sum-frequency generation vibrational spectroscopy of H2O and D2O ice films on Pt(111). Phys. Rev. B https://doi.org/10.1103/PhysRevB.97.075410 (2018).

  34. Shen, S. & Hu, S. A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58, 665–677 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  35. Tagantsev, A. K. & Yurkov, A. S. Flexoelectric effect in finite samples. J. Appl. Phys. 112, 044103 (2012).

    Article  ADS  Google Scholar 

  36. Stengel, M. Surface control of flexoelectricity. Phys. Rev. B 90, 201112 (2014).

    Article  ADS  Google Scholar 

  37. Narvaez, J., Saremi, S., Hong, J., Stengel, M. & Catalan, G. Large flexoelectric anisotropy in paraelectric barium titanate. Phys. Rev. Lett. 115, 037601 (2015).

    Article  ADS  Google Scholar 

  38. Martí, X. et al. Skin layer of BiFeO3 single crystals. Phys. Rev. Lett. 106, 236101 (2011).

    Article  ADS  Google Scholar 

  39. Zhang, X. et al. Large flexoelectriclike response from the spontaneously polarized surfaces in ferroelectric ceramics. Phys. Rev. Lett. 121, 057602 (2018).

    Article  ADS  Google Scholar 

  40. Pan, D. et al. Surface energy and surface proton order of ice Ih. Phys. Rev. Lett. 101, 155703 (2008).

    Article  ADS  Google Scholar 

  41. Michaelson, H. B. The work function of the elements and its periodicity. J. Appl. Phys. 48, 4729–4733 (1977).

    Article  ADS  Google Scholar 

  42. Buser, O. & Aufdermaur, A. in Electrical Processes in Atmospheres (eds Dolezalek, H., Reiter, R. & Landsberg, H. E.) 294–301 (Springer, 1976).

  43. Mazzega, E., del Pennino, U., Loria, A. & Mantovani, S. Volta effect and liquidlike layer at the ice surface. J. Chem. Phys. 64, 1028–1031 (1976).

    Article  ADS  Google Scholar 

  44. Batra, I. P. & Kleinman, L. Chemisorption of oxygen on aluminum surfaces. J. Electron Spectrosc. Relat. Phenom. 33, 175–241 (1984).

    Article  ADS  Google Scholar 

  45. Scott, J. F. Ferroelectrics go bananas. J. Phys. Condens. Matter https://doi.org/10.1088/0953-8984/20/02/021001 (2008).

  46. Pedroza, L. S., Poissier, A. & Fernandez-Serra, M. V. Local order of liquid water at metallic electrode surfaces. J. Chem. Phys. 142, 034706 (2015).

    Article  ADS  Google Scholar 

  47. Sugimoto, T. & Matsumoto, Y. Orientational ordering in heteroepitaxial water ice on metal surfaces. Phys. Chem. Chem. Phys. 22, 16453–16466 (2020).

    Article  Google Scholar 

  48. Poissier, A., Ganeshan, S. & Fernandez-Serra, M. The role of hydrogen bonding in water–metal interactions. Phys. Chem. Chem. Phys. 13, 3375–3384 (2011).

    Article  Google Scholar 

  49. Mizzi, C. A., Lin, A. Y. W. & Marks, L. D. Does flexoelectricity drive triboelectricity? Phys. Rev. Lett. 123, 116103 (2019).

    Article  ADS  Google Scholar 

  50. Mizzi, C. A. & Marks, L. D. When flexoelectricity drives triboelectricity. Nano Lett. 22, 3939–3945 (2022).

    Article  ADS  Google Scholar 

  51. Qiao, H. et al. Mixed triboelectric and flexoelectric charge transfer at the nanoscale. Adv. Sci. 8, 2101793 (2021).

    Article  Google Scholar 

  52. Kumar, M., Lim, J., Park, J.-Y. & Seo, H. Flexoelectric effect driven colossal triboelectricity with multilayer graphene. Curr. Appl. Phys. 32, 59–65 (2021).

    Article  ADS  Google Scholar 

  53. Lin, S., Zheng, M., Xu, L., Zhu, L. & Wang, Z. L. Electron transfer driven by tip-induced flexoelectricity in contact electrification. J. Phys. D 55, 315502 (2022).

    Article  ADS  Google Scholar 

  54. Olson, K. P. & Marks, L. D. What puts the ‘tribo’ in triboelectricity? Nano Lett. 24, 12299–12306 (2024).

    Article  ADS  Google Scholar 

  55. Sobarzo, J. C. et al. Spontaneous ordering of identical materials into a triboelectric series. Nature 638, 664–669 (2025).

    Article  ADS  Google Scholar 

  56. Milbrandt, J. A. & Morrison, H. Prediction of graupel density in a bulk microphysics scheme. J. Atmos. Sci. 70, 410–429 (2013).

    Article  ADS  Google Scholar 

  57. Wettlaufer, J. S. & Dash, J. G. Melting below zero. Sci. Am. 282, 50–53 (2000).

    Article  Google Scholar 

  58. Takahashi, T. Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci. 35, 1536–1548 (1978).

    Article  ADS  Google Scholar 

  59. Gaskell, W. & Illingworth, A. Charge transfer accompanying individual collisions between ice particles and its role in thunderstorm electrification. Q. J. R. Meteorol. Soc. 106, 841–854 (1980).

    Article  ADS  Google Scholar 

  60. Williams, E. R. The tripole structure of thunderstorms. J. Geophys. Res. Atmos. 94, 13151–13167 (1989).

    Article  ADS  Google Scholar 

  61. Jayaratne, E., Saunders, C. & Hallett, J. Laboratory studies of the charging of soft-hail during ice crystal interactions. Q. J. R. Meteorol. Soc. 109, 609–630 (1983).

    ADS  Google Scholar 

  62. Keith, W. & Saunders, C. The effect of centrifugal acceleration on the charging of a riming hailstone. Meteorol. Atmos. Phys. 41, 55–61 (1989).

    Article  ADS  Google Scholar 

  63. Caranti, G., Avila, E. & Ré, M. Charge transfer during individual collisions in ice growing from vapor deposition. J. Geophys. Res. Atmos. 96, 15365–15375 (1991).

    Article  ADS  Google Scholar 

  64. Avila, E. E. & Caranti, G. M. A laboratory study of static charging by fracture in ice growing by riming. J. Geophys. Res. Atmos. 99, 10611–10620 (1994).

    Article  ADS  Google Scholar 

  65. Pereyra, R. G. & Avila, E. E. Charge transfer measurements during single ice crystal collisions with a target growing by riming. J. Geophys. Res. Atmos. 107, AAC 23-21-AAC 23-29 (2002).

  66. Luque, M. Y., Nollas, F., Pereyra, R. G., Bürgesser, R. E. & Ávila, E. E. Charge separation in collisions between ice crystals and a spherical simulated graupel of centimeter size. J. Geophys. Res. Atmos. 125, e2019JD030941 (2020).

    Article  ADS  Google Scholar 

  67. Gaskell, W. Field and Laboratory Studies of Precipitation Charges (Univ. Manchester, 1979).

  68. Pamuk, B., Allen, P. B. & Fernández-Serra, M. V. Electronic and nuclear quantum effects on the ice XI/ice Ih phase transition. Phys. Rev. B 92, 134105 (2015).

    Article  ADS  Google Scholar 

  69. Dash, J. & Wettlaufer, J. The surface physics of ice in thunderstorms. Can. J. Phys. 81, 201–207 (2003).

    Article  ADS  Google Scholar 

  70. Ordejón, P., Artacho, E. & Soler, J. M. Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B 53, R10441 (1996).

    Article  ADS  Google Scholar 

  71. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745 (2002).

    Article  ADS  Google Scholar 

  72. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  73. Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    Article  ADS  Google Scholar 

  74. Wang, J., Román-Pérez, G., Soler, J. M., Artacho, E. & Fernández-Serra, M.-V. Density, structure, and dynamics of water: the effect of van der Waals interactions. J. Chem. Phys. 134, 024516 (2011).

    Article  ADS  Google Scholar 

  75. Pamuk, B. et al. Anomalous nuclear quantum effects in ice. Phys. Rev. Lett. 108, 193003 (2012).

    Article  ADS  Google Scholar 

  76. Wen, X. et al. Flexoelectricity and surface ferroelectricity of water ice. figshare https://doi.org/10.6084/m9.figshare.29378186 (2025).

Download references