References
He, M., Sun, Y. & Han, B. Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling. Angew. Chem. Int. Ed. 52, 9620–9633 (2013).
Gao, P., Zhong, L., Han, B., He, M. & Sun, Y. Green carbon science: keeping the pace in practice. Angew. Chem. Int. Ed. 61, e202210095 (2022).
He, M., Sun, Y. & Han, B. Green carbon science: efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angew. Chem. Int. Ed. 61, e202112835 (2022).
Wu, S., Wu, S. & Sun, Y. Light-driven dry reforming of methane on metal catalysts. Sol. RRL 5, 2000507 (2021).
Zhai, J. et al. Selective photocatalytic aerobic oxidation of methane into carbon monoxide over Ag/AgCl@SiO2. Chem. Sci. 13, 4616–4622 (2022).
Stolarczyk, J. K., Bhattacharyya, S., Polavarapu, L. & Feldmann, J. Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures. ACS Catal. 8, 3602–3635 (2018).
Chen, G. et al. From solar energy to fuels: recent advances in light-driven C1 chemistry. Angew. Chem. 58, 17528–17551 (2019).
Li, X., Wang, C. & Tang, J. Methane transformation by photocatalysis. Nat. Rev. Mater. 7, 617–632 (2022).
Li, Q., Ouyang, Y., Li, H., Wang, L. & Zeng, J. Photocatalytic conversion of methane: recent advancements and prospects. Angew. Chem. Int. Ed. 61, e202108069 (2022).
Song, H., Meng, X., Wang, Z.-j., Liu, H. & Ye, J. Solar-energy-mediated methane conversion. Joule 3, 1606–1636 (2019).
He, C., Wu, S., Wang, L. & Zhang, J. Recent advances in photo-enhanced dry reforming of methane: areview. J. Photochem. Photobiol. 51, 100468 (2022).
Zhai, J. et al. Photo-thermal coupling to enhance CO2 hydrogenation toward CH4 over Ru/MnO/Mn3O4. Nat. Commun. 15, 1109 (2024).
Gao, H. Molecular photodissociation in the vacuum ultraviolet region: implications for astrochemistry and planetary atmospheric chemistry. Mol. Phys. 119, e1861354 (2021).
Ashfold, M. N. R., Ingle, R. A., Karsili, T. N. V. & Zhang, J. Photoinduced C–H bond fission in prototypical organic molecules and radicals. Phys. Chem. Chem. Phys. 21, 13880–13901 (2019).
Schwell, M., Jochims, H.-W., Baumgärtel, H., Dulieu, F. & Leach, S. VUV photochemistry of small biomolecules. Planet. Space Sci. 54, 1073–1085 (2006).
Tsuji, M. et al. Photochemical removal of acetaldehyde using 172 nm vacuum ultraviolet excimer lamp in N2 or air at atmospheric pressure. Environ. Sci. Pollut. Res. Int. 26, 11314–11325 (2019).
Zhai, J. et al. Catalyst-free photochemical CO2 hydrogenation to CO and CH4 conversion to C2H6. Green Chem. 26, 8872–8876 (2024).
Derk, A. R., Funke, H. H. & Falconer, J. L. Methane conversion to higher hydrocarbons by UV irradiation. Ind. Eng Chem. Res. 47, 6568–6572 (2008).
Taylor, C. E. & Noceti, R. P. New developments in the photocatalytic conversion of methane to methanol. Catal. Today 55, 259–267 (2000).
Kojima, M. et al. Photolysis of CO2 with 158 nm (F2) laser. Reactivity of O (1D) with CH4, CF3H, and CF3CH3. Chem. Lett. 21, 1309–1312 (1992).
Kotze, F. J., Strydom, C. A., du Plessis, A. & Dlamini, T. L. Fast- and ultra-fast laser pulse induced reactions between carbon dioxide and methane. J. Nat. Gas Chem. 19, 198–202 (2010).
Ogura, K. & Kataoka, M. Photochemical conversion of methane. J. Mol. Catal. 43, 371–379 (1988).
Tahir, B., Tahir, M. & Amin, N. A. S. Silver loaded protonated graphitic carbon nitride (Ag/pg-C3N4) nanosheets for stimulating CO2 reduction to fuels via photocatalytic bi-reforming of methane. Appl. Surf. Sci. 493, 18–31 (2019).
Chang, Y. et al. Vibrationally excited molecular hydrogen production from the water photochemistry. Nat. Commun. 12, 6303 (2021).
Priebe, A., Pucci, A. & Otto, A. Infrared reflection−absorption spectra of C2H4 and C2H6 on Cu: effect of surface roughness. J. Phys. Chem. B 110, 1673–1679 (2006).
Song, D., Li, J. & Cai, Q. In situ diffuse reflectance FTIR study of CO adsorbed on a cobalt catalyst supported by silica with different pore sizes. J. Phys. Chem. C 111, 18970–18979 (2007).
Wisnosky, M. G., Eggers, D. F., Fredrickson, L. R. & Decius, J. C. The vibrational spectra of solid II ethane and ethane-d6. J. Chem. Phys. 79, 3505–3512 (1983).
Li, C., Domen, K., Maruya, K.-i. & Onishi, T. Spectroscopic identification of adsorbed species derived from adsorption and decomposition of formic acid, methanol, and formaldehyde on cerium oxide. J. Catal. 125, 445–455 (1990).
Shi, X. et al. Photoswitchable chlorine vacancies in ultrathin Bi4O5Cl2 for selective CO2 Photoreduction. ACS Catal. 12, 3965–3973 (2022).
Zhang, Z.-Y. & Xie, T. In situ DRIFTs-based comprehensive reaction mechanism of photo-thermal synergetic catalysis for dry reforming of methane over Ru-CeO2 catalyst. J. Colloid Interface Sci. 677, 863–872 (2025).
Raskó, J. & Kiss, J. Adsorption and surface reactions of acetaldehyde on TiO2, CeO2 and Al2O3. Appl. Catal. A Gen. 287, 252–260 (2005).
Bennett, C. J. & Kaiser, R. I. On the formation of glycolaldehyde (HCOCH2OH) and methyl formate (HCOOCH3) in interstellar ice analogs. Astrophys. J. 661, 899 (2007).
Buettner, G. R. Spin trapping: ESR parameters of spin adducts. Free Radical Biol. Med. 3, 259–303 (1987).
Samuni, A. et al. Hydroxyl radical production by stimulated neutrophils reappraised. J. Biol. Chem. 263, 13797–13801 (1988).
An, B. et al. Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. Nat. Mater. 21, 932–938 (2022).
Hébrard, E., Dobrijevic, M., Bénilan, Y. & Raulin, F. Photochemical kinetics uncertainties in modeling Titan’s atmosphere: a review. J. Photochem. Photobiol. C Photochem. Rev. 7, 211–230 (2006).
Zhang, H. et al. Photo-driven iron-induced non-oxidative coupling of methane to ethane. Angew. Chem. Int. Ed. 2023, e202303405 (2023).
Zhang, Z.-g. et al. Ion-velocity map imaging study of photodissociation dynamics of acetaldehyde. Chin. J. Chem. Phys. 27, 249–255 (2014).
Oh, J., Matsumoto, T. & Nakamura, J. Photocoupling of methane in water vapor to saturated hydrocarbons. Catal. Lett. 124, 215–218 (2008).
Tsuji, M., Kawahara, T., Uto, K., Hayashi, J. & Tsuji, T. Photochemical removal of NO2 in air at atmospheric pressure using side-on type 172-nm Xe2 excimer lamp. Int. J. Environ. Sci. Technol. 16, 5685–5694 (2019).
Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).
Frisch, M. J. et al. Gaussian 16, Revision A.03 (Gaussian, 2016).
Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
Pritchard, B. P., Altarawy, D., Didier, B., Gibson, T. D. & Windus, T. L. New basis set exchange: an open, up-to-date resource for the molecular sciences community. J. Chem. Inf. Model. 59, 4814–4820 (2019).
Fukui, K. The path of chemical reactions—the IRC approach. Acc. Chem. Res. 14, 363–368 (1981).