Light-based catalyst-free conversion of CH4 and CO2

7 min read Original article ↗

References

  1. He, M., Sun, Y. & Han, B. Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling. Angew. Chem. Int. Ed. 52, 9620–9633 (2013).

    Article  Google Scholar 

  2. Gao, P., Zhong, L., Han, B., He, M. & Sun, Y. Green carbon science: keeping the pace in practice. Angew. Chem. Int. Ed. 61, e202210095 (2022).

    Article  Google Scholar 

  3. He, M., Sun, Y. & Han, B. Green carbon science: efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angew. Chem. Int. Ed. 61, e202112835 (2022).

    Article  ADS  Google Scholar 

  4. Wu, S., Wu, S. & Sun, Y. Light-driven dry reforming of methane on metal catalysts. Sol. RRL 5, 2000507 (2021).

    Article  Google Scholar 

  5. Zhai, J. et al. Selective photocatalytic aerobic oxidation of methane into carbon monoxide over Ag/AgCl@SiO2. Chem. Sci. 13, 4616–4622 (2022).

    Article  Google Scholar 

  6. Stolarczyk, J. K., Bhattacharyya, S., Polavarapu, L. & Feldmann, J. Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures. ACS Catal. 8, 3602–3635 (2018).

    Article  Google Scholar 

  7. Chen, G. et al. From solar energy to fuels: recent advances in light-driven C1 chemistry. Angew. Chem. 58, 17528–17551 (2019).

    Article  ADS  Google Scholar 

  8. Li, X., Wang, C. & Tang, J. Methane transformation by photocatalysis. Nat. Rev. Mater. 7, 617–632 (2022).

    Article  ADS  Google Scholar 

  9. Li, Q., Ouyang, Y., Li, H., Wang, L. & Zeng, J. Photocatalytic conversion of methane: recent advancements and prospects. Angew. Chem. Int. Ed. 61, e202108069 (2022).

    Article  Google Scholar 

  10. Song, H., Meng, X., Wang, Z.-j., Liu, H. & Ye, J. Solar-energy-mediated methane conversion. Joule 3, 1606–1636 (2019).

  11. He, C., Wu, S., Wang, L. & Zhang, J. Recent advances in photo-enhanced dry reforming of methane: areview. J. Photochem. Photobiol. 51, 100468 (2022).

    Article  Google Scholar 

  12. Zhai, J. et al. Photo-thermal coupling to enhance CO2 hydrogenation toward CH4 over Ru/MnO/Mn3O4. Nat. Commun. 15, 1109 (2024).

    Article  ADS  Google Scholar 

  13. Gao, H. Molecular photodissociation in the vacuum ultraviolet region: implications for astrochemistry and planetary atmospheric chemistry. Mol. Phys. 119, e1861354 (2021).

    Article  ADS  Google Scholar 

  14. Ashfold, M. N. R., Ingle, R. A., Karsili, T. N. V. & Zhang, J. Photoinduced C–H bond fission in prototypical organic molecules and radicals. Phys. Chem. Chem. Phys. 21, 13880–13901 (2019).

    Article  Google Scholar 

  15. Schwell, M., Jochims, H.-W., Baumgärtel, H., Dulieu, F. & Leach, S. VUV photochemistry of small biomolecules. Planet. Space Sci. 54, 1073–1085 (2006).

    Article  ADS  Google Scholar 

  16. Tsuji, M. et al. Photochemical removal of acetaldehyde using 172 nm vacuum ultraviolet excimer lamp in N2 or air at atmospheric pressure. Environ. Sci. Pollut. Res. Int. 26, 11314–11325 (2019).

    Article  Google Scholar 

  17. Zhai, J. et al. Catalyst-free photochemical CO2 hydrogenation to CO and CH4 conversion to C2H6. Green Chem. 26, 8872–8876 (2024).

  18. Derk, A. R., Funke, H. H. & Falconer, J. L. Methane conversion to higher hydrocarbons by UV irradiation. Ind. Eng Chem. Res. 47, 6568–6572 (2008).

    Article  Google Scholar 

  19. Taylor, C. E. & Noceti, R. P. New developments in the photocatalytic conversion of methane to methanol. Catal. Today 55, 259–267 (2000).

    Article  Google Scholar 

  20. Kojima, M. et al. Photolysis of CO2 with 158 nm (F2) laser. Reactivity of O (1D) with CH4, CF3H, and CF3CH3. Chem. Lett. 21, 1309–1312 (1992).

    Article  Google Scholar 

  21. Kotze, F. J., Strydom, C. A., du Plessis, A. & Dlamini, T. L. Fast- and ultra-fast laser pulse induced reactions between carbon dioxide and methane. J. Nat. Gas Chem. 19, 198–202 (2010).

    Article  Google Scholar 

  22. Ogura, K. & Kataoka, M. Photochemical conversion of methane. J. Mol. Catal. 43, 371–379 (1988).

    Article  Google Scholar 

  23. Tahir, B., Tahir, M. & Amin, N. A. S. Silver loaded protonated graphitic carbon nitride (Ag/pg-C3N4) nanosheets for stimulating CO2 reduction to fuels via photocatalytic bi-reforming of methane. Appl. Surf. Sci. 493, 18–31 (2019).

    Article  ADS  Google Scholar 

  24. Chang, Y. et al. Vibrationally excited molecular hydrogen production from the water photochemistry. Nat. Commun. 12, 6303 (2021).

    Article  ADS  Google Scholar 

  25. Priebe, A., Pucci, A. & Otto, A. Infrared reflection−absorption spectra of C2H4 and C2H6 on Cu: effect of surface roughness. J. Phys. Chem. B 110, 1673–1679 (2006).

    Article  Google Scholar 

  26. Song, D., Li, J. & Cai, Q. In situ diffuse reflectance FTIR study of CO adsorbed on a cobalt catalyst supported by silica with different pore sizes. J. Phys. Chem. C 111, 18970–18979 (2007).

    Article  Google Scholar 

  27. Wisnosky, M. G., Eggers, D. F., Fredrickson, L. R. & Decius, J. C. The vibrational spectra of solid II ethane and ethane-d6. J. Chem. Phys. 79, 3505–3512 (1983).

    Article  ADS  Google Scholar 

  28. Li, C., Domen, K., Maruya, K.-i. & Onishi, T. Spectroscopic identification of adsorbed species derived from adsorption and decomposition of formic acid, methanol, and formaldehyde on cerium oxide. J. Catal. 125, 445–455 (1990).

    Article  Google Scholar 

  29. Shi, X. et al. Photoswitchable chlorine vacancies in ultrathin Bi4O5Cl2 for selective CO2 Photoreduction. ACS Catal. 12, 3965–3973 (2022).

    Article  Google Scholar 

  30. Zhang, Z.-Y. & Xie, T. In situ DRIFTs-based comprehensive reaction mechanism of photo-thermal synergetic catalysis for dry reforming of methane over Ru-CeO2 catalyst. J. Colloid Interface Sci. 677, 863–872 (2025).

    Article  ADS  Google Scholar 

  31. Raskó, J. & Kiss, J. Adsorption and surface reactions of acetaldehyde on TiO2, CeO2 and Al2O3. Appl. Catal. A Gen. 287, 252–260 (2005).

  32. Bennett, C. J. & Kaiser, R. I. On the formation of glycolaldehyde (HCOCH2OH) and methyl formate (HCOOCH3) in interstellar ice analogs. Astrophys. J. 661, 899 (2007).

    Article  ADS  Google Scholar 

  33. Buettner, G. R. Spin trapping: ESR parameters of spin adducts. Free Radical Biol. Med. 3, 259–303 (1987).

    Article  Google Scholar 

  34. Samuni, A. et al. Hydroxyl radical production by stimulated neutrophils reappraised. J. Biol. Chem. 263, 13797–13801 (1988).

    Article  Google Scholar 

  35. An, B. et al. Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. Nat. Mater. 21, 932–938 (2022).

    Article  ADS  Google Scholar 

  36. Hébrard, E., Dobrijevic, M., Bénilan, Y. & Raulin, F. Photochemical kinetics uncertainties in modeling Titan’s atmosphere: a review. J. Photochem. Photobiol. C Photochem. Rev. 7, 211–230 (2006).

    Article  Google Scholar 

  37. Zhang, H. et al. Photo-driven iron-induced non-oxidative coupling of methane to ethane. Angew. Chem. Int. Ed. 2023, e202303405 (2023).

    Google Scholar 

  38. Zhang, Z.-g. et al. Ion-velocity map imaging study of photodissociation dynamics of acetaldehyde. Chin. J. Chem. Phys. 27, 249–255 (2014).

  39. Oh, J., Matsumoto, T. & Nakamura, J. Photocoupling of methane in water vapor to saturated hydrocarbons. Catal. Lett. 124, 215–218 (2008).

    Article  Google Scholar 

  40. Tsuji, M., Kawahara, T., Uto, K., Hayashi, J. & Tsuji, T. Photochemical removal of NO2 in air at atmospheric pressure using side-on type 172-nm Xe2 excimer lamp. Int. J. Environ. Sci. Technol. 16, 5685–5694 (2019).

    Article  Google Scholar 

  41. Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    Article  ADS  Google Scholar 

  42. Frisch, M. J. et al. Gaussian 16, Revision A.03 (Gaussian, 2016).

  43. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  ADS  Google Scholar 

  44. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  ADS  Google Scholar 

  45. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  ADS  Google Scholar 

  46. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  Google Scholar 

  47. Pritchard, B. P., Altarawy, D., Didier, B., Gibson, T. D. & Windus, T. L. New basis set exchange: an open, up-to-date resource for the molecular sciences community. J. Chem. Inf. Model. 59, 4814–4820 (2019).

    Article  Google Scholar 

  48. Fukui, K. The path of chemical reactions—the IRC approach. Acc. Chem. Res. 14, 363–368 (1981).

    Article  Google Scholar 

Download references