Brownian spin-locking effect

11 min read Original article ↗

Data availability

Source data are provided with this paper. Additional data supporting the conclusions of this study are available from the corresponding author upon request.

References

  1. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958).

    Article  CAS  Google Scholar 

  2. Segev, M., Silberberg, Y. & Christodoulides, D. N. Anderson localization of light. Nat. Photonics 7, 197–204 (2013).

    Article  CAS  Google Scholar 

  3. Rogers, E. T. et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 11, 432–435 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Patsyk, A., Sivan, U., Segev, M. & Bandres, M. A. Observation of branched flow of light. Nature 583, 60–65 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. van Tiggelen, B. A. Transverse diffusion of light in Faraday-active media. Phys. Rev. Lett. 75, 422 (1995).

    Article  Google Scholar 

  6. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  7. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).

    Article  PubMed  Google Scholar 

  9. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. science 235, 1196–1198 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. & Jungwirth, T. Spin hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  Google Scholar 

  11. Neugebauer, M., Eismann, J. S., Bauer, T. & Banzer, P. Magnetic and electric transverse spin density of spatially confined light. Phys. Rev. X 8, 021042 (2018).

    CAS  Google Scholar 

  12. Rodríguez-Herrera, O. G., Lara, D., Bliokh, K. Y., Ostrovskaya, E. A. & Dainty, C. Optical nanoprobing via spin–orbit interaction of light. Phys. Rev. Lett. 104, 253601 (2010).

    Article  PubMed  Google Scholar 

  13. Shitrit, N. et al. Spin-optical metamaterial route to spin-controlled photonics. Science 340, 724–726 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Rong, K. et al. Photonic Rashba effect from quantum emitters mediated by a Berry-phase defective photonic crystal. Nat. Nanotechnol. 15, 927–933 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Onoda, M., Murakami, S. & Nagaosa, N. Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004).

    Article  PubMed  Google Scholar 

  16. Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Shi, P., Du, L., Li, C., Zayats, A. V. & Yuan, X. Transverse spin dynamics in structured electromagnetic guided waves. Proc. Natl Acad. Sci. USA 118, e2018816118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Van Mechelen, T. & Jacob, Z. Universal spin-momentum locking of evanescent waves. Optica 3, 118–126 (2016).

    Article  Google Scholar 

  19. Bliokh, K. Y. & Nori, F. Transverse spin of a surface polariton. Phys. Rev. A 85, 061801 (2012).

    Article  Google Scholar 

  20. Vernon, A. J., Golat, S., Rigouzzo, C., Lim, E. A. & Rodríguez-Fortuño, F. J. A decomposition of light’s spin angular momentum density. Light Sci. Appl. 13, 160 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Picardi, M. F., Zayats, A. V. & Rodríguez-Fortuño, F. J. Janus and Huygens dipoles: near-field directionality beyond spin-momentum locking. Phys. Rev. Lett. 120, 117402 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Rodríguez-Fortuño, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328–330 (2013).

    Article  PubMed  Google Scholar 

  23. Vernon, A. J., Kille, A., Rodríguez-Fortuño, F. J. & Afanasev, A. Non-diffracting polarization features around far-field zeros of electromagnetic radiation. Optica 11, 120–127 (2024).

    Article  Google Scholar 

  24. Neugebauer, M., Banzer, P. & Nechayev, S. Emission of circularly polarized light by a linear dipole. Sci. Adv. 5, eaav7588 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photonics 9, 796–808 (2015).

    Article  CAS  Google Scholar 

  26. Bardon-Brun, T., Delande, D. & Cherroret, N. Spin Hall effect of light in a random medium. Phys. Rev. Lett. 123, 043901 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Hosten, O. & Kwiat, P. Observation of the spin Hall effect of light via weak measurements. Science 319, 787–790 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Bomzon, Z. E., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141–1143 (2002).

    Article  PubMed  Google Scholar 

  29. Kim, M., Lee, D., Yang, Y., Kim, Y. & Rho, J. Reaching the highest efficiency of spin Hall effect of light in the near-infrared using all-dielectric metasurfaces. Nat. Commun. 13, 2036 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yin, X., Ye, Z., Rho, J., Wang, Y. & Zhang, X. Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Maguid, E. et al. Disorder-induced optical transition from spin Hall to random Rashba effect. Science 358, 1411–1415 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, B., Rong, K., Maguid, E., Kleiner, V. & Hasman, E. Probing nanoscale fluctuation of ferromagnetic meta-atoms with a stochastic photonic spin Hall effect. Nat. Nanotechnol. 15, 450–456 (2020).

    Article  PubMed  Google Scholar 

  33. Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322, 549–560 (1905).

  34. Berne, B. J. & Pecora, R. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Courier Corporation, 2000).

  35. Aiello, A., Banzer, P., Neugebauer, M. & Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photonics 9, 789–795 (2015).

    Article  CAS  Google Scholar 

  36. Eismann, J. et al. Transverse spinning of unpolarized light. Nat. Photonics 15, 156–161 (2021).

    Article  CAS  Google Scholar 

  37. Huang, R. et al. Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nat. Phys. 7, 576–580 (2011).

    Article  CAS  Google Scholar 

  38. Kheifets, S., Simha, A., Melin, K., Li, T. & Raizen, M. G. Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss. Science 343, 1493–1496 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank X. Cao for helping us with sample preparation, and useful discussions with Y. Pan at the early stage of this work. This work is supported by National Key Research and Development Program of China (grant no. 2022YFA1205101), National Science Foundation of China (grant nos. 12274296 and 12192252), Shanghai International Cooperation Program for Science and Technology (grant no. 22520714300) and Shanghai Jiao Tong University 2030 Initiative. B.W. is sponsored by Yangyang Development Fund. E.H. acknowledges financial support from the Israel Science Foundation (grant no. 1170/20).

Author information

Author notes

  1. These authors contributed equally: Xiao Zhang, Peiyang Chen.

Authors and Affiliations

  1. State Key Laboratory of Photonics and Communications, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China

    Xiao Zhang, Peiyang Chen, Mei Li, Bo Wang & Xianfeng Chen

  2. Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China

    Peiyang Chen

  3. Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, China

    Yuzhi Shi

  4. Atomic-Scale Photonics Laboratory, Russell Berrie Nanotechnology Institute, and Helen Diller Quantum Center, Technion – Israel Institute of Technology, Haifa, Israel

    Erez Hasman

  5. Shanghai Research Center for Quantum Sciences, Shanghai, China

    Xianfeng Chen

  6. Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan, China

    Xianfeng Chen

Authors

  1. Xiao Zhang
  2. Peiyang Chen
  3. Mei Li
  4. Yuzhi Shi
  5. Erez Hasman
  6. Bo Wang
  7. Xianfeng Chen

Contributions

E.H., B.W. and X.C. supervised this work. B.W. initialized theory and experiment, observed the phenomena and wrote the manuscript. X.Z. systematically performed experimental work, theory and figure preparation. P.C. contributed importantly in Mie theory analysis and assisted in experimental characterization. M.L. performed g2 and SEM measurement. Y.S. assisted in manuscript revision. B.W., X.Z., P.C. and M.L. prepared the supplementary material. E.H. and X.C. contributed to discussions at all stages of this work and revised the manuscript.

Corresponding authors

Correspondence to Erez Hasman, Bo Wang or Xianfeng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Francisco Rodríguez Fortuño and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Observations for different laser beam waists and polarizations.

(a) and (c): plane-wave illumination (Gaussian beam waist ~2 mm); (a) is x- and y-polarized, and (c) is left- and right-handed circularly polarized. (b) and (d): focused-beam illumination (focused beam waist < 0.5 mm); (b) is x- and y-polarized, and (d) is left- and right- handed circularly polarized. When the incident light is linearly polarized (along x or y), the spin distributions under both plane wave and focused beam illumination are very similar. Under circular polarizations, the spin values are stronger in the illumination region but weaker in the diffusion region.

Source data

Extended Data Fig. 2 Experimentally observed Brownian spin-locking effect for different Fe3O4 nanoparticle concentrations.

Normalized light intensity distributions (a) and sx distributions (b) for various concentrations of Fe3O4 nanoparticles in water. and (yellow boxes) denote the analysis regions used to extract the light intensity and sx values in (c) and (d). The two upper boxes represent regions symmetric to and with respect to the laser beam. The laser is incident from the right side of the images. (c) Variation of normalized light intensity with particle concentration. <I1 > ( < I2 > ) represents the average light intensity in region (). (d) Variation of <sx> with particle concentration. <sx1 > (<sx2 > ) represents the average absolute value of sx in region (). As the concentration increases, the spin effect becomes weaker, although its spatial distribution remains similar. While the intensity evolution in both regions ( and ) is comparable across the concentration range, the spin distributions differ significantly. Specifically, when the concentration of nanoparticles is approximately 2.28\(\times\)108 cm−3, the statistically averaged spin at region , <sx1 > , approaches 0, while <sx2> is about 0.09. Notably, the sx distribution near region persists over a wide range of concentrations, indicating the robustness of the Brownian spin-locking effect across single and multiple scattering regimes. Data are presented as mean ± s.d. (technical replicates, n = 10).

Source data

Extended Data Fig. 3 Spin angular momentum properties of the scattering field for different combinations of multipoles.

(a) Schematic of Mie scattering. The location of the analytical point (black dot) in the figure is \((5\sqrt{2}\lambda ,\,5\sqrt{2}\lambda ,\,0)\). (b) Phase diagram of sρ at the black dot in (a) with respect to Mie scattering coefficients. sρ represents the radial component of the spin angular momentum density in the xy plane. \({\Phi }_{{a}_{1}},\,{\Phi }_{{b}_{1}},\,{\Phi }_{{a}_{2}}\) represent the phases of \({a}_{1},\,{b}_{1},\,{a}_{2}\), respectively. The spin is strong if there is a ±π/2 phase difference between the two coupled modes, and disappears if the phase difference approaches 0 or π. (c) Spin angular momentum distribution of the Mie scattering field under different combinations of Mie coefficients. The short arrows (orange arrows) represent the spin angular momentum. These scattering cases are divided into three different types. One, for instance, the electric dipole, represents topological-insulator-like spin textures with two orbital spin distributions perpendicular to the radiation cones (a1, b1, a2 = 1, 0, 0). This is a typical transverse spin. For the Janus dipole, the spins are parallel to the radiation cones (a1, b1, a2 = 1, i, 0), that is, longitudinal spin. In general, the spin from scattering is neither perpendicular nor parallel to the kinetic momentum.

Source data

Extended Data Fig. 4 Statistical properties of the Brownian spin-locking effect and incoherent scattering theory.

(a) The histograms are experimentally observed statistical distributions of the spatial intensity (upper panel) and spin (lower panel), which are obtained from the diffusion regions of Figs. 1d and 1e, respectively. The solid curves are fitted using a Burr distribution for the intensity and a Beta distribution for the spin. (b) The calculated spatial distributions of the normalized intensity and spin from the incoherent scattering theory. (c) The calculated spatial distributions of the normalized intensity and spin from the coherent scattering theory. (d) The theoretical evolution of the intensity and spin distributions by changing m/N from 100% (incoherent) to 0.01% (coherent). As the degree of coherence increases, the spin distributions become wider with enhanced skewness, corresponding to increased spin fluctuations that reduce the spin-locking phenomenon.

Source data

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, P., Li, M. et al. Brownian spin-locking effect. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02413-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41563-025-02413-5