References
McNab, F. et al. Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science 323, 800–802 (2009).
Park, D. C. & Bischof, G. N. The aging mind: neuroplasticity in response to cognitive training. Dialogues Clin. Neurosci. 15, 109–119 (2013).
Anguera, J. A. et al. Video game training enhances cognitive control in older adults. Nature 501, 97–101 (2013).
Mishra, J., de Villers-Sidani, E., Merzenich, M. & Gazzaley, A. Adaptive training diminishes distractibility in aging across species. Neuron 84, 1091–1103 (2014).
Salmi, J., Nyberg, L. & Laine, M. Working memory training mostly engages general-purpose large-scale networks for learning. Neurosci. Biobehav. Rev. 93, 108–122 (2018).
Bäckman, L. et al. Increased dopamine release after working-memory updating training: neurochemical correlates of transfer. Sci. Rep. 7, 7160 (2017).
Green, C. S. & Seitz, A. R. The impacts of video games on cognition (and how the government can guide the industry). Policy Insights Behav. Brain Sci. 2, 101–110 (2015).
Deveau, J., Jaeggi, S. M., Zordan, V., Phung, C. & Seitz, A. R. How to build better memory training games. Front. Syst. Neurosci. 8, 243 (2014).
Söderqvist, S. et al. Dopamine, working memory, and training induced plasticity: implications for developmental research. Dev. Psychol. 48, 836–843 (2012).
Mishra, J. & Gazzaley, A. Closed-loop rehabilitation of age-related cognitive disorders. Semin. Neurol. 34, 584–590 (2014).
Au, J. et al. Improving fluid intelligence with training on working memory: a meta-analysis. Psychon. Bull. Rev. 22, 366–377 (2015).
Schwaighofer, M., Fischer, F. & Bühner, M. Does working memory training transfer? A meta-analysis including training conditions as moderators. Educ. Psychol. 50, 138–166 (2015).
Soveri, A., Antfolk, J., Karlsson, L., Salo, B. & Laine, M. Working memory training revisited: a multi-level meta-analysis of n-back training studies. Psychon. Bull. Rev. 24, 1077–1096 (2017).
Weicker, J., Villringer, A. & Thöne-Otto, A. Can impaired working memory functioning be improved by training? A meta-analysis with a special focus on brain injured patients. Neuropsychology 30, 190–212 (2016).
Karbach, J. & Verhaeghen, P. Making working memory work: a meta-analysis of executive-control and working memory training in older adults. Psychol. Sci. 25, 2027–2037 (2014).
Melby-Lervåg, M. & Hulme, C. Is working memory training effective? A meta-analytic review. Dev. Psychol. 49, 270–291 (2013).
Melby-Lervåg, M. & Hulme, C. There is no convincing evidence that working memory training is effective: a reply to Au et al. (2014) and Karbach and Verhaeghen (2014). Psychon. Bull. Rev. 23, 324–330 (2016).
Katz, B., Jones, M. R., Shah, P., Buschkuehl, M. & Jaeggi, S. M. in Cognitive Training: An Overview of Features and Applications (eds Strobach, T. & Karbach, J.) 107–123 (Springer, 2021).
Pergher, V. et al. Divergent research methods limit understanding of working memory training. J. Cogn. Enhanc. https://doi.org/10.1007/s41465-019-00134-7 (2019).
Burgess, G. C., Gray, J. R., Conway, A. R. A. & Braver, T. S. Neural mechanisms of interference control underlie the relationship between fluid intelligence and working memory span. J. Exp. Psychol. Gen. 140, 674–692 (2011).
Gray, J. R., Chabris, C. F. & Braver, T. S. Neural mechanisms of general fluid intelligence. Nat. Neurosci. 6, 316–322 (2003).
Hockey, A. & Geffen, G. The concurrent validity and test–retest reliability of a visuospatial working memory task. Intelligence 32, 591–605 (2004).
Kane, M. J., Conway, A. R. A., Miura, T. K. & Colflesh, G. J. H. Working memory, attention control, and the N-back task: a question of construct validity. J. Exp. Psychol. Learn. Mem. Cogn. 33, 615–622 (2007).
Jaeggi, S. M., Buschkuehl, M., Perrig, W. J. & Meier, B. The concurrent validity of the N-back task as a working memory measure. Memory 18, 394–412 (2010).
Soveri, A., Karlsson, E. P. A., Waris, O., Grönholm-Nyman, P. & Laine, M. Pattern of near transfer effects following working memory training with a dual N-back task. Exp. Psychol. 64, 240–252 (2017).
Buschkuehl, M., Hernandez-Garcia, L., Jaeggi, S. M., Bernard, J. A. & Jonides, J. Neural effects of short-term training on working memory. Cogn. Affect. Behav. Neurosci. 14, 147–160 (2014).
Küper, K. & Karbach, J. Increased training complexity reduces the effectiveness of brief working memory training: evidence from short-term single and dual n-back training interventions. J. Cogn. Psychol. 28, 199–208 (2016).
Barnett, S. M. & Ceci, S. J. When and where do we apply what we learn? A taxonomy for far transfer. Psychol. Bull. 128, 612–637 (2002).
Harty, S., Sella, F. & Cohen Kadosh, R. Mind the brain: the mediating and moderating role of neurophysiology. Trends Cogn. Sci. (Regul. Ed.) 21, 2–5 (2017).
Vuorre, M. & Bolger, N. Within-subject mediation analysis for experimental data in cognitive psychology and neuroscience. Behav. Res. Methods 50, 2125–2143 (2018).
Jaeggi, S. M., Buschkuehl, M., Jonides, J. & Shah, P. Short- and long-term benefits of cognitive training. Proc. Natl Acad. Sci. USA 108, 10081–10086 (2011).
Laine, M., Fellman, D., Waris, O. & Nyman, T. J. The early effects of external and internal strategies on working memory updating training. Sci. Rep. 8, 4045 (2018).
Katz, B., Jaeggi, S. M., Buschkuehl, M., Shah, P. & Jonides, J. The effect of monetary compensation on cognitive training outcomes. Learn. Motiv. 63, 77–90 (2018).
Boot, W. R., Simons, D. J., Stothart, C. & Stutts, C. The pervasive problem with placebos in psychology: why active control groups are not sufficient to rule out placebo effects. Perspect. Psychol. Sci. 8, 445–454 (2013).
Au, J., Gibson, B. C., Bunarjo, K., Buschkuehl, M. & Jaeggi, S. M. Quantifying the difference between active and passive control groups in cognitive interventions using two meta-analytical approaches. J. Cogn. Enhanc. 4, 192–210 (2020).
Hayes, A. F. in Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach (eds Kenny, D. A. & Little, T. D.) 77–112 (Guilford, 2018).
Tate, C. U. On the overuse and misuse of mediation analysis: it may be a matter of timing. Basic Appl. Soc. Psych. 37, 235–246 (2015).
Zinke, K. et al. Working memory training and transfer in older adults: effects of age, baseline performance, and training gains. Dev. Psychol. 50, 304–315 (2014).
Rudebeck, S. R., Bor, D., Ormond, A., O’Reilly, J. X. & Lee, A. C. H. A potential spatial working memory training task to improve both episodic memory and fluid intelligence. PLoS ONE 7, e50431 (2012).
Tidwell, J. W., Dougherty, M. R., Chrabaszcz, J. R., Thomas, R. P. & Mendoza, J. L. What counts as evidence for working memory training? Problems with correlated gains and dichotomization. Psychon. Bull. Rev. 21, 620–628 (2014).
Chuderski, A. & Necka, E. The contribution of working memory to fluid reasoning: capacity, control, or both? J. Exp. Psychol. Learn. Mem. Cogn. 38, 1689–1710 (2012).
Friedman, N. P. et al. Not all executive functions are related to intelligence. Psychol. Sci. 17, 172–179 (2006).
Halford, G. S., Cowan, N. & Andrews, G. Separating cognitive capacity from knowledge: a new hypothesis. Trends Cogn. Sci. (Regul. Ed.) 11, 236–242 (2007).
Carpenter, P. A., Just, M. A. & Shell, P. What one intelligence test measures: a theoretical account of the processing in the Raven Progressive Matrices Test. Psychol. Rev. 97, 404–431 (1990).
Unsworth, N. & Engle, R. Working memory capacity and fluid abilities: examining the correlation between Operation Span and Raven. Intelligence 33, 67–81 (2005).
Wiley, J., Jarosz, A. F., Cushen, P. J. & Colflesh, G. J. H. New rule use drives the relation between working memory capacity and Raven’s Advanced Progressive Matrices. J. Exp. Psychol. Learn. Mem. Cogn. 37, 256–263 (2011).
Jarosz, A. F. & Wiley, J. Why does working memory capacity predict RAPM performance? A possible role of distraction. Intelligence 40, 427–438 (2012).
Harrison, T. L., Shipstead, Z. & Engle, R. W. Why is working memory capacity related to matrix reasoning tasks? Mem. Cogn. 43, 389–396 (2015).
Engle, R. W. Working memory and executive attention: a revisit. Perspect. Psychol. Sci. 13, 190–193 (2018).
Shipstead, Z., Harrison, T. L. & Engle, R. W. Working memory capacity and fluid intelligence: maintenance and disengagement. Perspect. Psychol. Sci. 11, 771–799 (2016).
Dahlin, E., Neely, A. S., Larsson, A., Bäckman, L. & Nyberg, L. Transfer of learning after updating training mediated by the striatum. Science 320, 1510–1512 (2008).
O’Rourke, H. P. & MacKinnon, D. P. Reasons for testing mediation in the absence of an intervention effect: a research imperative in prevention and intervention research. J. Stud. Alcohol Drugs 79, 171–181 (2018).
Hayes, A. F. Beyond Baron and Kenny: statistical mediation analysis in the new millennium. Commun. Monogr. 76, 408–420 (2009).
Twenge, J. M. & Joiner, T. E. Mental distress among U.S. adults during the COVID-19 pandemic. J. Clin. Psychol. 76, 2170–2182 (2020).
Pfefferbaum, B. & North, C. S. Mental health and the COVID-19 pandemic. N. Engl. J. Med. 383, 510–512 (2020).
Fellman, D., Ritakallio, L., Waris, O., Jylkkä, J. & Laine, M. Beginning of the pandemic: COVID-19-elicited anxiety as a predictor of working memory performance. Front. Psychol. 11, 576466 (2020).
Li, W. et al. Dual n-back working memory training evinces superior transfer effects compared to the method of loci. Sci. Rep. 11, 3072 (2021).
Lilienthal, L., Tamez, E., Shelton, J. T., Myerson, J. & Hale, S. Dual n-back training increases the capacity of the focus of attention. Psychon. Bull. Rev. 20, 135–141 (2013).
Chein, J. M. & Morrison, A. B. Expanding the mind’s workspace: training and transfer effects with a complex working memory span task. Psychon. Bull. Rev. 17, 193–199 (2010).
Borella, E., Carretti, B., Riboldi, F. & De Beni, R. Working memory training in older adults: evidence of transfer and maintenance effects. Psychol. Aging 25, 767–778 (2010).
Schwarb, H., Nail, J. & Schumacher, E. H. Working memory training improves visual short-term memory capacity. Psychol. Res. 80, 128–148 (2016).
Stepankova, H. et al. The malleability of working memory and visuospatial skills: a randomized controlled study in older adults. Dev. Psychol. 50, 1049–1059 (2014).
Pahor, A. et al. Multisensory facilitation of working memory training. J. Cogn. Enhanc. https://doi.org/10.1007/s41465-020-00196-y (2020).
Linares, R., Borella, E., Lechuga, M. T., Carretti, B. & Pelegrina, S. Nearest transfer effects of working memory training: a comparison of two programs focused on working memory updating. PLoS ONE 14, e0211321 (2019).
Blacker, K. J., Negoita, S., Ewen, J. B. & Courtney, S. M. N-back versus complex span working memory training. J. Cogn. Enhanc. 1, 434–454 (2017).
Chooi, W.-T. & Thompson, L. A. Working memory training does not improve intelligence in healthy young adults. Intelligence 40, 531–542 (2012).
Li, S.-C. et al. Working memory plasticity in old age: practice gain, transfer, and maintenance. Psychol. Aging 23, 731–742 (2008).
Thompson, T. W. et al. Failure of working memory training to enhance cognition or intelligence. PLoS ONE 8, e63614 (2013).
Minear, M. et al. A simultaneous examination of two forms of working memory training: evidence for near transfer only. Mem. Cogn. 44, 1014–1037 (2016).
Redick, T. S. et al. No evidence of intelligence improvement after working memory training: a randomized, placebo-controlled study. J. Exp. Psychol. Gen. 142, 359–379 (2013).
Schweizer, S., Hampshire, A. & Dalgleish, T. Extending brain-training to the affective domain: increasing cognitive and affective executive control through emotional working memory training. PLoS ONE 6, e24372 (2011).
Jones, M. R., Katz, B., Buschkuehl, M., Jaeggi, S. M. & Shah, P. Exploring N-back cognitive training for children with ADHD. J. Atten. Disord. https://doi.org/10.1177/1087054718779230 (2018).
Maraver, M. J., Bajo, M. T. & Gomez-Ariza, C. J. Training on working memory and inhibitory control in young adults. Front. Hum. Neurosci. 10, 588 (2016).
Pahor, A., Stavropoulos, T., Jaeggi, S. M. & Seitz, A. R. Validation of a matrix reasoning task for mobile devices. Behav. Res. Methods https://doi.org/10.3758/s13428-018-1152-2 (2018).
Berger, E. M., Fehr, E., Hermes, H., Schunk, D. & Winkel, K. The Impact of Working Memory Training on Children’s Cognitive and Noncognitive Skills IZA Discussion Papers No. 13338 (IZA, 2020).
Ramani, G. B. et al. Racing dragons and remembering aliens: benefits of playing number and working memory games on kindergartners’ numerical knowledge. Dev. Sci. 23, e12908 (2020).
Zhang, Q. et al. The malleability of executive function in early childhood: effects of schooling and targeted training. Dev. Sci. 22, e12748 (2019).
Collins, C. L. et al. Video-based remote administration of cognitive assessments and interventions: a comparison with in-lab administration. J. Cogn. Enhanc. https://doi.org/10.1007/s41465-022-00240-z (2022).
Simons, D. J. et al. Do “brain-training” programs work? Psychol. Sci. Public Interest 17, 103–186 (2016).
Borella, E. et al. Training working memory in older adults: is there an advantage of using strategies? Psychol. Aging 32, 178–191 (2017).
Fellman, D. et al. The role of strategy use in working memory training outcomes. J. Mem. Lang. 110, 104064 (2020).
Katz, B. et al. in Cognitive Training (eds Strobach, T. & Karbach, J.) 157–166 (Springer International, 2016); https://doi.org/10.1007/978-3-319-42662-4_15
Jaeggi, S. M., Buschkuehl, M., Shah, P. & Jonides, J. The role of individual differences in cognitive training and transfer. Mem. Cogn. 42, 464–480 (2014).
López-Alonso, V., Cheeran, B., Río-Rodríguez, D. & Fernández-Del-Olmo, M. Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul. 7, 372–380 (2014).
Bailey, N. W. et al. Responders to rTMS for depression show increased fronto-midline theta and theta connectivity compared to non-responders. Brain Stimul. 11, 190–203 (2018).
Reid, G. et al. Responders and non-responders to probiotic interventions: how can we improve the odds? Gut Microbes 1, 200–204 (2010).
Salas-Pérez, F. et al. Differentially methylated regions (DMRs) in PON3 gene between responders and non-responders to a weight loss dietary intervention: a new tool for precision management of obesity. Epigenetics https://doi.org/10.1080/15592294.2021.1873629 (2021).
Ostojic, S. M. Short-term GAA loading: responders versus nonresponders analysis. Food Sci. Nutr. 8, 4446–4448 (2020).
Pickering, C. & Kiely, J. Do non-responders to exercise exist—and if so, what should we do about them? Sports Med. 49, 1–7 (2019).
Tullo, D. & Jaeggi, S. M. in The Cambridge Handbook of Working Memory and Language (eds Schwieter, W. & Zen, Z.) 881–908 (Cambridge University Press, 2022).
Schork, N. J. Personalized medicine: time for one-person trials. Nature 520, 609–611 (2015).
Peretz, C. et al. Computer-based, personalized cognitive training versus classical computer games: a randomized double-blind prospective trial of cognitive stimulation. Neuroepidemiology 36, 91–99 (2011).
Shatil, E., Metzer, A., Horvitz, O. & Miller, A. Home-based personalized cognitive training in MS patients: a study of adherence and cognitive performance. NeuroRehabilitation 26, 143–153 (2010).
Sandeep, S., Shelton, C. R., Pahor, A., Jaeggi, S. M. & Seitz, A. R. Application of machine learning models for tracking participant skills in cognitive training. Front. Psychol. 11, 1532 (2020).
Matzen, L. E. et al. Recreating Raven’s: software for systematically generating large numbers of Raven-like matrix problems with normed properties. Behav. Res. Methods 42, 525–541 (2010).
Davidson, M. C., Amso, D., Anderson, L. C. & Diamond, A. Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia 44, 2037–2078 (2006).
JASP Team. JASP v.0.9.2 (2019).
Wagenmakers, E.-J. et al. Bayesian inference for psychology. Part II: example applications with JASP. Psychon. Bull. Rev. 25, 58–76 (2018).
Lee, M. D. & Wagenmakers, E.-J. Bayesian Cognitive Modeling: A Practical Course (Cambridge Univ. Press, 2013); https://doi.org/10.1017/CBO9781139087759
Field, A. in Discovering Statistics Using IBM SPSS Statistics (ed. Carmichael, M.) 293–356 (Sage, 2013).
IBM SPSS Statistics for MAC v.27.0 (IBM Corp., 2020).
Holland, P. W. Statistics and causal inference. J. Am. Stat. Assoc. 81, 945–960 (1986).
Shrout, P. E. & Bolger, N. Mediation in experimental and nonexperimental studies: new procedures and recommendations. Psychol. Methods 7, 422–445 (2002).
Muthén, L. K. & Muthén, B. O. Mplus User’s Guide 8th edn (Muthén & Muthén, 1998–2017).
Jaeggi, S. M. et al. Investigating the effects of spacing on working memory training outcome—a randomized controlled multi-site trial in older adults. J. Gerontol. B https://doi.org/10.1093/geronb/gbz090 (2019).
Broadway, J. M. & Engle, R. W. Validating running memory span: measurement of working memory capacity and links with fluid intelligence. Behav. Res. Methods 42, 563–570 (2010).
Cowan, N. What are the differences between long-term, short-term, and working memory? Prog. Brain Res. 169, 323–338 (2008).
Conway, A. R. A. et al. Working memory span tasks: a methodological review and user’s guide. Psychon. Bull. Rev. 12, 769–786 (2005).
Pahor, A. et al. UCancellation: a new mobile measure of selective attention and concentration. Behav. Res. Methods https://doi.org/10.3758/s13428-021-01765-5 (2022).
Brickenkamp, R. & Zillmer, E. Test d2: Concentration-Endurance Test (CJ Hogrefe, 1998).
Ekstrom, R. B. ETS Kit of Factor-Referenced Cognitive Tests (Educational Testing Service, 1976).
Kane, M. J. et al. The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning. J. Exp. Psychol. Gen. 133, 189–217 (2004).
Ekstrom, R. B., French, J. W., Harmon, H. H. & Derman, D. ETS Kit of Factor-Referenced Cognitive Tests (ETS Educational Testing Service, 1976).
Bennett, G. K., Seashore, H. G. & Wesman, A. G. Differential Aptitude Test: Space Relations (Psychological Corporation, 1972).