Near transfer to an unrelated N-back task mediates the effect of N-back working memory training on matrix reasoning

15 min read Original article ↗

References

  1. McNab, F. et al. Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science 323, 800–802 (2009).

    Article  CAS  Google Scholar 

  2. Park, D. C. & Bischof, G. N. The aging mind: neuroplasticity in response to cognitive training. Dialogues Clin. Neurosci. 15, 109–119 (2013).

    Article  Google Scholar 

  3. Anguera, J. A. et al. Video game training enhances cognitive control in older adults. Nature 501, 97–101 (2013).

    Article  CAS  Google Scholar 

  4. Mishra, J., de Villers-Sidani, E., Merzenich, M. & Gazzaley, A. Adaptive training diminishes distractibility in aging across species. Neuron 84, 1091–1103 (2014).

    Article  CAS  Google Scholar 

  5. Salmi, J., Nyberg, L. & Laine, M. Working memory training mostly engages general-purpose large-scale networks for learning. Neurosci. Biobehav. Rev. 93, 108–122 (2018).

    Article  Google Scholar 

  6. Bäckman, L. et al. Increased dopamine release after working-memory updating training: neurochemical correlates of transfer. Sci. Rep. 7, 7160 (2017).

    Article  Google Scholar 

  7. Green, C. S. & Seitz, A. R. The impacts of video games on cognition (and how the government can guide the industry). Policy Insights Behav. Brain Sci. 2, 101–110 (2015).

    Article  Google Scholar 

  8. Deveau, J., Jaeggi, S. M., Zordan, V., Phung, C. & Seitz, A. R. How to build better memory training games. Front. Syst. Neurosci. 8, 243 (2014).

    Google Scholar 

  9. Söderqvist, S. et al. Dopamine, working memory, and training induced plasticity: implications for developmental research. Dev. Psychol. 48, 836–843 (2012).

    Article  Google Scholar 

  10. Mishra, J. & Gazzaley, A. Closed-loop rehabilitation of age-related cognitive disorders. Semin. Neurol. 34, 584–590 (2014).

    Article  Google Scholar 

  11. Au, J. et al. Improving fluid intelligence with training on working memory: a meta-analysis. Psychon. Bull. Rev. 22, 366–377 (2015).

    Article  Google Scholar 

  12. Schwaighofer, M., Fischer, F. & Bühner, M. Does working memory training transfer? A meta-analysis including training conditions as moderators. Educ. Psychol. 50, 138–166 (2015).

    Article  Google Scholar 

  13. Soveri, A., Antfolk, J., Karlsson, L., Salo, B. & Laine, M. Working memory training revisited: a multi-level meta-analysis of n-back training studies. Psychon. Bull. Rev. 24, 1077–1096 (2017).

    Article  Google Scholar 

  14. Weicker, J., Villringer, A. & Thöne-Otto, A. Can impaired working memory functioning be improved by training? A meta-analysis with a special focus on brain injured patients. Neuropsychology 30, 190–212 (2016).

    Article  Google Scholar 

  15. Karbach, J. & Verhaeghen, P. Making working memory work: a meta-analysis of executive-control and working memory training in older adults. Psychol. Sci. 25, 2027–2037 (2014).

    Article  Google Scholar 

  16. Melby-Lervåg, M. & Hulme, C. Is working memory training effective? A meta-analytic review. Dev. Psychol. 49, 270–291 (2013).

    Article  Google Scholar 

  17. Melby-Lervåg, M. & Hulme, C. There is no convincing evidence that working memory training is effective: a reply to Au et al. (2014) and Karbach and Verhaeghen (2014). Psychon. Bull. Rev. 23, 324–330 (2016).

    Article  Google Scholar 

  18. Katz, B., Jones, M. R., Shah, P., Buschkuehl, M. & Jaeggi, S. M. in Cognitive Training: An Overview of Features and Applications (eds Strobach, T. & Karbach, J.) 107–123 (Springer, 2021).

  19. Pergher, V. et al. Divergent research methods limit understanding of working memory training. J. Cogn. Enhanc. https://doi.org/10.1007/s41465-019-00134-7 (2019).

  20. Burgess, G. C., Gray, J. R., Conway, A. R. A. & Braver, T. S. Neural mechanisms of interference control underlie the relationship between fluid intelligence and working memory span. J. Exp. Psychol. Gen. 140, 674–692 (2011).

    Article  Google Scholar 

  21. Gray, J. R., Chabris, C. F. & Braver, T. S. Neural mechanisms of general fluid intelligence. Nat. Neurosci. 6, 316–322 (2003).

    Article  CAS  Google Scholar 

  22. Hockey, A. & Geffen, G. The concurrent validity and test–retest reliability of a visuospatial working memory task. Intelligence 32, 591–605 (2004).

    Article  Google Scholar 

  23. Kane, M. J., Conway, A. R. A., Miura, T. K. & Colflesh, G. J. H. Working memory, attention control, and the N-back task: a question of construct validity. J. Exp. Psychol. Learn. Mem. Cogn. 33, 615–622 (2007).

    Article  Google Scholar 

  24. Jaeggi, S. M., Buschkuehl, M., Perrig, W. J. & Meier, B. The concurrent validity of the N-back task as a working memory measure. Memory 18, 394–412 (2010).

    Article  Google Scholar 

  25. Soveri, A., Karlsson, E. P. A., Waris, O., Grönholm-Nyman, P. & Laine, M. Pattern of near transfer effects following working memory training with a dual N-back task. Exp. Psychol. 64, 240–252 (2017).

    Article  Google Scholar 

  26. Buschkuehl, M., Hernandez-Garcia, L., Jaeggi, S. M., Bernard, J. A. & Jonides, J. Neural effects of short-term training on working memory. Cogn. Affect. Behav. Neurosci. 14, 147–160 (2014).

    Article  Google Scholar 

  27. Küper, K. & Karbach, J. Increased training complexity reduces the effectiveness of brief working memory training: evidence from short-term single and dual n-back training interventions. J. Cogn. Psychol. 28, 199–208 (2016).

    Article  Google Scholar 

  28. Barnett, S. M. & Ceci, S. J. When and where do we apply what we learn? A taxonomy for far transfer. Psychol. Bull. 128, 612–637 (2002).

    Article  Google Scholar 

  29. Harty, S., Sella, F. & Cohen Kadosh, R. Mind the brain: the mediating and moderating role of neurophysiology. Trends Cogn. Sci. (Regul. Ed.) 21, 2–5 (2017).

    Article  Google Scholar 

  30. Vuorre, M. & Bolger, N. Within-subject mediation analysis for experimental data in cognitive psychology and neuroscience. Behav. Res. Methods 50, 2125–2143 (2018).

    Article  Google Scholar 

  31. Jaeggi, S. M., Buschkuehl, M., Jonides, J. & Shah, P. Short- and long-term benefits of cognitive training. Proc. Natl Acad. Sci. USA 108, 10081–10086 (2011).

    Article  CAS  Google Scholar 

  32. Laine, M., Fellman, D., Waris, O. & Nyman, T. J. The early effects of external and internal strategies on working memory updating training. Sci. Rep. 8, 4045 (2018).

    Article  Google Scholar 

  33. Katz, B., Jaeggi, S. M., Buschkuehl, M., Shah, P. & Jonides, J. The effect of monetary compensation on cognitive training outcomes. Learn. Motiv. 63, 77–90 (2018).

    Article  Google Scholar 

  34. Boot, W. R., Simons, D. J., Stothart, C. & Stutts, C. The pervasive problem with placebos in psychology: why active control groups are not sufficient to rule out placebo effects. Perspect. Psychol. Sci. 8, 445–454 (2013).

    Article  Google Scholar 

  35. Au, J., Gibson, B. C., Bunarjo, K., Buschkuehl, M. & Jaeggi, S. M. Quantifying the difference between active and passive control groups in cognitive interventions using two meta-analytical approaches. J. Cogn. Enhanc. 4, 192–210 (2020).

    Article  Google Scholar 

  36. Hayes, A. F. in Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach (eds Kenny, D. A. & Little, T. D.) 77–112 (Guilford, 2018).

  37. Tate, C. U. On the overuse and misuse of mediation analysis: it may be a matter of timing. Basic Appl. Soc. Psych. 37, 235–246 (2015).

    Article  Google Scholar 

  38. Zinke, K. et al. Working memory training and transfer in older adults: effects of age, baseline performance, and training gains. Dev. Psychol. 50, 304–315 (2014).

    Article  Google Scholar 

  39. Rudebeck, S. R., Bor, D., Ormond, A., O’Reilly, J. X. & Lee, A. C. H. A potential spatial working memory training task to improve both episodic memory and fluid intelligence. PLoS ONE 7, e50431 (2012).

    Article  CAS  Google Scholar 

  40. Tidwell, J. W., Dougherty, M. R., Chrabaszcz, J. R., Thomas, R. P. & Mendoza, J. L. What counts as evidence for working memory training? Problems with correlated gains and dichotomization. Psychon. Bull. Rev. 21, 620–628 (2014).

    Article  Google Scholar 

  41. Chuderski, A. & Necka, E. The contribution of working memory to fluid reasoning: capacity, control, or both? J. Exp. Psychol. Learn. Mem. Cogn. 38, 1689–1710 (2012).

    Article  Google Scholar 

  42. Friedman, N. P. et al. Not all executive functions are related to intelligence. Psychol. Sci. 17, 172–179 (2006).

    Article  Google Scholar 

  43. Halford, G. S., Cowan, N. & Andrews, G. Separating cognitive capacity from knowledge: a new hypothesis. Trends Cogn. Sci. (Regul. Ed.) 11, 236–242 (2007).

    Article  Google Scholar 

  44. Carpenter, P. A., Just, M. A. & Shell, P. What one intelligence test measures: a theoretical account of the processing in the Raven Progressive Matrices Test. Psychol. Rev. 97, 404–431 (1990).

    Article  CAS  Google Scholar 

  45. Unsworth, N. & Engle, R. Working memory capacity and fluid abilities: examining the correlation between Operation Span and Raven. Intelligence 33, 67–81 (2005).

    Article  Google Scholar 

  46. Wiley, J., Jarosz, A. F., Cushen, P. J. & Colflesh, G. J. H. New rule use drives the relation between working memory capacity and Raven’s Advanced Progressive Matrices. J. Exp. Psychol. Learn. Mem. Cogn. 37, 256–263 (2011).

    Article  Google Scholar 

  47. Jarosz, A. F. & Wiley, J. Why does working memory capacity predict RAPM performance? A possible role of distraction. Intelligence 40, 427–438 (2012).

    Article  Google Scholar 

  48. Harrison, T. L., Shipstead, Z. & Engle, R. W. Why is working memory capacity related to matrix reasoning tasks? Mem. Cogn. 43, 389–396 (2015).

    Article  Google Scholar 

  49. Engle, R. W. Working memory and executive attention: a revisit. Perspect. Psychol. Sci. 13, 190–193 (2018).

    Article  Google Scholar 

  50. Shipstead, Z., Harrison, T. L. & Engle, R. W. Working memory capacity and fluid intelligence: maintenance and disengagement. Perspect. Psychol. Sci. 11, 771–799 (2016).

    Article  Google Scholar 

  51. Dahlin, E., Neely, A. S., Larsson, A., Bäckman, L. & Nyberg, L. Transfer of learning after updating training mediated by the striatum. Science 320, 1510–1512 (2008).

    Article  CAS  Google Scholar 

  52. O’Rourke, H. P. & MacKinnon, D. P. Reasons for testing mediation in the absence of an intervention effect: a research imperative in prevention and intervention research. J. Stud. Alcohol Drugs 79, 171–181 (2018).

    Article  Google Scholar 

  53. Hayes, A. F. Beyond Baron and Kenny: statistical mediation analysis in the new millennium. Commun. Monogr. 76, 408–420 (2009).

    Article  Google Scholar 

  54. Twenge, J. M. & Joiner, T. E. Mental distress among U.S. adults during the COVID-19 pandemic. J. Clin. Psychol. 76, 2170–2182 (2020).

    Article  Google Scholar 

  55. Pfefferbaum, B. & North, C. S. Mental health and the COVID-19 pandemic. N. Engl. J. Med. 383, 510–512 (2020).

    Article  CAS  Google Scholar 

  56. Fellman, D., Ritakallio, L., Waris, O., Jylkkä, J. & Laine, M. Beginning of the pandemic: COVID-19-elicited anxiety as a predictor of working memory performance. Front. Psychol. 11, 576466 (2020).

    Article  Google Scholar 

  57. Li, W. et al. Dual n-back working memory training evinces superior transfer effects compared to the method of loci. Sci. Rep. 11, 3072 (2021).

    Article  CAS  Google Scholar 

  58. Lilienthal, L., Tamez, E., Shelton, J. T., Myerson, J. & Hale, S. Dual n-back training increases the capacity of the focus of attention. Psychon. Bull. Rev. 20, 135–141 (2013).

    Article  Google Scholar 

  59. Chein, J. M. & Morrison, A. B. Expanding the mind’s workspace: training and transfer effects with a complex working memory span task. Psychon. Bull. Rev. 17, 193–199 (2010).

    Article  Google Scholar 

  60. Borella, E., Carretti, B., Riboldi, F. & De Beni, R. Working memory training in older adults: evidence of transfer and maintenance effects. Psychol. Aging 25, 767–778 (2010).

    Article  Google Scholar 

  61. Schwarb, H., Nail, J. & Schumacher, E. H. Working memory training improves visual short-term memory capacity. Psychol. Res. 80, 128–148 (2016).

    Article  Google Scholar 

  62. Stepankova, H. et al. The malleability of working memory and visuospatial skills: a randomized controlled study in older adults. Dev. Psychol. 50, 1049–1059 (2014).

    Article  Google Scholar 

  63. Pahor, A. et al. Multisensory facilitation of working memory training. J. Cogn. Enhanc. https://doi.org/10.1007/s41465-020-00196-y (2020).

  64. Linares, R., Borella, E., Lechuga, M. T., Carretti, B. & Pelegrina, S. Nearest transfer effects of working memory training: a comparison of two programs focused on working memory updating. PLoS ONE 14, e0211321 (2019).

    Article  CAS  Google Scholar 

  65. Blacker, K. J., Negoita, S., Ewen, J. B. & Courtney, S. M. N-back versus complex span working memory training. J. Cogn. Enhanc. 1, 434–454 (2017).

    Article  Google Scholar 

  66. Chooi, W.-T. & Thompson, L. A. Working memory training does not improve intelligence in healthy young adults. Intelligence 40, 531–542 (2012).

    Article  Google Scholar 

  67. Li, S.-C. et al. Working memory plasticity in old age: practice gain, transfer, and maintenance. Psychol. Aging 23, 731–742 (2008).

    Article  Google Scholar 

  68. Thompson, T. W. et al. Failure of working memory training to enhance cognition or intelligence. PLoS ONE 8, e63614 (2013).

    Article  CAS  Google Scholar 

  69. Minear, M. et al. A simultaneous examination of two forms of working memory training: evidence for near transfer only. Mem. Cogn. 44, 1014–1037 (2016).

    Article  Google Scholar 

  70. Redick, T. S. et al. No evidence of intelligence improvement after working memory training: a randomized, placebo-controlled study. J. Exp. Psychol. Gen. 142, 359–379 (2013).

    Article  Google Scholar 

  71. Schweizer, S., Hampshire, A. & Dalgleish, T. Extending brain-training to the affective domain: increasing cognitive and affective executive control through emotional working memory training. PLoS ONE 6, e24372 (2011).

    Article  CAS  Google Scholar 

  72. Jones, M. R., Katz, B., Buschkuehl, M., Jaeggi, S. M. & Shah, P. Exploring N-back cognitive training for children with ADHD. J. Atten. Disord. https://doi.org/10.1177/1087054718779230 (2018).

  73. Maraver, M. J., Bajo, M. T. & Gomez-Ariza, C. J. Training on working memory and inhibitory control in young adults. Front. Hum. Neurosci. 10, 588 (2016).

    Article  Google Scholar 

  74. Pahor, A., Stavropoulos, T., Jaeggi, S. M. & Seitz, A. R. Validation of a matrix reasoning task for mobile devices. Behav. Res. Methods https://doi.org/10.3758/s13428-018-1152-2 (2018).

  75. Berger, E. M., Fehr, E., Hermes, H., Schunk, D. & Winkel, K. The Impact of Working Memory Training on Children’s Cognitive and Noncognitive Skills IZA Discussion Papers No. 13338 (IZA, 2020).

  76. Ramani, G. B. et al. Racing dragons and remembering aliens: benefits of playing number and working memory games on kindergartners’ numerical knowledge. Dev. Sci. 23, e12908 (2020).

    Article  Google Scholar 

  77. Zhang, Q. et al. The malleability of executive function in early childhood: effects of schooling and targeted training. Dev. Sci. 22, e12748 (2019).

    Article  Google Scholar 

  78. Collins, C. L. et al. Video-based remote administration of cognitive assessments and interventions: a comparison with in-lab administration. J. Cogn. Enhanc. https://doi.org/10.1007/s41465-022-00240-z (2022).

  79. Simons, D. J. et al. Do “brain-training” programs work? Psychol. Sci. Public Interest 17, 103–186 (2016).

    Article  Google Scholar 

  80. Borella, E. et al. Training working memory in older adults: is there an advantage of using strategies? Psychol. Aging 32, 178–191 (2017).

    Article  Google Scholar 

  81. Fellman, D. et al. The role of strategy use in working memory training outcomes. J. Mem. Lang. 110, 104064 (2020).

    Article  Google Scholar 

  82. Katz, B. et al. in Cognitive Training (eds Strobach, T. & Karbach, J.) 157–166 (Springer International, 2016); https://doi.org/10.1007/978-3-319-42662-4_15

  83. Jaeggi, S. M., Buschkuehl, M., Shah, P. & Jonides, J. The role of individual differences in cognitive training and transfer. Mem. Cogn. 42, 464–480 (2014).

    Article  Google Scholar 

  84. López-Alonso, V., Cheeran, B., Río-Rodríguez, D. & Fernández-Del-Olmo, M. Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul. 7, 372–380 (2014).

    Article  Google Scholar 

  85. Bailey, N. W. et al. Responders to rTMS for depression show increased fronto-midline theta and theta connectivity compared to non-responders. Brain Stimul. 11, 190–203 (2018).

    Article  CAS  Google Scholar 

  86. Reid, G. et al. Responders and non-responders to probiotic interventions: how can we improve the odds? Gut Microbes 1, 200–204 (2010).

    Article  Google Scholar 

  87. Salas-Pérez, F. et al. Differentially methylated regions (DMRs) in PON3 gene between responders and non-responders to a weight loss dietary intervention: a new tool for precision management of obesity. Epigenetics https://doi.org/10.1080/15592294.2021.1873629 (2021).

  88. Ostojic, S. M. Short-term GAA loading: responders versus nonresponders analysis. Food Sci. Nutr. 8, 4446–4448 (2020).

    Article  CAS  Google Scholar 

  89. Pickering, C. & Kiely, J. Do non-responders to exercise exist—and if so, what should we do about them? Sports Med. 49, 1–7 (2019).

    Article  Google Scholar 

  90. Tullo, D. & Jaeggi, S. M. in The Cambridge Handbook of Working Memory and Language (eds Schwieter, W. & Zen, Z.) 881–908 (Cambridge University Press, 2022).

  91. Schork, N. J. Personalized medicine: time for one-person trials. Nature 520, 609–611 (2015).

    Article  CAS  Google Scholar 

  92. Peretz, C. et al. Computer-based, personalized cognitive training versus classical computer games: a randomized double-blind prospective trial of cognitive stimulation. Neuroepidemiology 36, 91–99 (2011).

    Article  Google Scholar 

  93. Shatil, E., Metzer, A., Horvitz, O. & Miller, A. Home-based personalized cognitive training in MS patients: a study of adherence and cognitive performance. NeuroRehabilitation 26, 143–153 (2010).

    Article  Google Scholar 

  94. Sandeep, S., Shelton, C. R., Pahor, A., Jaeggi, S. M. & Seitz, A. R. Application of machine learning models for tracking participant skills in cognitive training. Front. Psychol. 11, 1532 (2020).

    Article  Google Scholar 

  95. Matzen, L. E. et al. Recreating Raven’s: software for systematically generating large numbers of Raven-like matrix problems with normed properties. Behav. Res. Methods 42, 525–541 (2010).

    Article  Google Scholar 

  96. Davidson, M. C., Amso, D., Anderson, L. C. & Diamond, A. Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia 44, 2037–2078 (2006).

    Article  Google Scholar 

  97. JASP Team. JASP v.0.9.2 (2019).

  98. Wagenmakers, E.-J. et al. Bayesian inference for psychology. Part II: example applications with JASP. Psychon. Bull. Rev. 25, 58–76 (2018).

    Article  Google Scholar 

  99. Lee, M. D. & Wagenmakers, E.-J. Bayesian Cognitive Modeling: A Practical Course (Cambridge Univ. Press, 2013); https://doi.org/10.1017/CBO9781139087759

  100. Field, A. in Discovering Statistics Using IBM SPSS Statistics (ed. Carmichael, M.) 293–356 (Sage, 2013).

  101. IBM SPSS Statistics for MAC v.27.0 (IBM Corp., 2020).

  102. Holland, P. W. Statistics and causal inference. J. Am. Stat. Assoc. 81, 945–960 (1986).

    Article  Google Scholar 

  103. Shrout, P. E. & Bolger, N. Mediation in experimental and nonexperimental studies: new procedures and recommendations. Psychol. Methods 7, 422–445 (2002).

    Article  Google Scholar 

  104. Muthén, L. K. & Muthén, B. O. Mplus User’s Guide 8th edn (Muthén & Muthén, 1998–2017).

  105. Jaeggi, S. M. et al. Investigating the effects of spacing on working memory training outcome—a randomized controlled multi-site trial in older adults. J. Gerontol. B https://doi.org/10.1093/geronb/gbz090 (2019).

  106. Broadway, J. M. & Engle, R. W. Validating running memory span: measurement of working memory capacity and links with fluid intelligence. Behav. Res. Methods 42, 563–570 (2010).

    Article  Google Scholar 

  107. Cowan, N. What are the differences between long-term, short-term, and working memory? Prog. Brain Res. 169, 323–338 (2008).

    Article  Google Scholar 

  108. Conway, A. R. A. et al. Working memory span tasks: a methodological review and user’s guide. Psychon. Bull. Rev. 12, 769–786 (2005).

    Article  Google Scholar 

  109. Pahor, A. et al. UCancellation: a new mobile measure of selective attention and concentration. Behav. Res. Methods https://doi.org/10.3758/s13428-021-01765-5 (2022).

  110. Brickenkamp, R. & Zillmer, E. Test d2: Concentration-Endurance Test (CJ Hogrefe, 1998).

  111. Ekstrom, R. B. ETS Kit of Factor-Referenced Cognitive Tests (Educational Testing Service, 1976).

  112. Kane, M. J. et al. The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning. J. Exp. Psychol. Gen. 133, 189–217 (2004).

    Article  Google Scholar 

  113. Ekstrom, R. B., French, J. W., Harmon, H. H. & Derman, D. ETS Kit of Factor-Referenced Cognitive Tests (ETS Educational Testing Service, 1976).

  114. Bennett, G. K., Seashore, H. G. & Wesman, A. G. Differential Aptitude Test: Space Relations (Psychological Corporation, 1972).

Download references