Data availability
The JWST data (Programme ID: General Observer 1727) are publicly available at https://exchg.calet.org/cosmosweb-public/DR0.5/. The HST data (Programme IDs: General Observer 9822 and 10092) are publicly available at http://irsa.ipac.caltech.edu/data/COSMOS/. The XMM-Newton dataset (Programme ID: 020336) is publicly available in staged releases via the IPAC/IRSA website at https://irsa.ipac.caltech.edu/data/COSMOS/. The Chandra data (Programme IDs: 901037) are publicly available at https://irsa.ipac.caltech.edu/data/COSMOS/gator_docs/cosmos_chandraxid_colDescriptions.html. The weak lensing mass maps are publicly available with this article as Supplementary Data 1–6.
References
Massey, R. et al. The Shear Testing Programme 2: factors affecting high-precision weak-lensing analyses. Mon. Not. R. Astron. Soc. 376, 13–38 (2007).
Oguri, M. et al. Two- and three-dimensional wide-field weak lensing mass maps from the Hyper Suprime-Cam Subaru Strategic Program S16A data. Publ. Astron. Soc. Jpn 70, S26 (2017).
Martinet, N. et al. KiDS-450: cosmological constraints from weak-lensing peak statistics—II: inference from shear peaks using N-body simulations. Mon. Not. R. Astron. Soc. 474, 712–730 (2018).
Scoville, N. et al. COSMOS: Hubble Space Telescope observations. Astrophys. J. Suppl. Ser. 172, 38–45 (2007).
Finoguenov, A. et al. The XMM-Newton wide-field survey in the COSMOS field: statistical properties of clusters of galaxies. Astrophys. J. 172, 182–195 (2007).
Massey, R. et al. Dark matter maps reveal cosmic scaffolding. Nature 445, 286–290 (2007).
Laigle, C. et al. The cosmos2015 catalog: exploring the 1 < z < 6 universe with half a million galaxies. Astrophys. J. Suppl. Ser. 224, 24 (2016).
Smolčić, V. et al. The VLA-COSMOS 3 GHz Large Project: continuum data and source catalog release. Astron. Astrophys. 602, A1 (2017).
Liu, D. et al. Automated mining of the alma archive in the cosmos field (A3COSMOS). I. Robust ALMA continuum photometry catalogs and stellar mass and star formation properties for ~700 galaxies at z = 0.5–6. Astrophys. J. Suppl. Ser. 244, 40 (2019).
Casey, C. M. et al. COSMOS-Web: an overview of the JWST Cosmic Origins Survey. Astrophys. J. 954, 31 (2023).
Franco, M. et al. COSMOS-Web: comprehensive data reduction for wide-area JWST NIRCam imaging. Preprint at https://arxiv.org/abs/2506.03256 (2025).
Shuntov, M. et al. COSMOS2025: the COSMOS-Web galaxy catalog of photometry, morphology, redshifts, and physical parameters from JWST, HST, and ground-based imaging. Preprint at https://arxiv.org/abs/2506.03243 (2025).
Harish, S. et al. COSMOS-Web: MIRI data reduction and number counts at 7.7 μm Using JWST. Astrophys. J. 992, 45 (2025).
Kaiser, N. & Squires, G. Mapping the dark matter with weak gravitational lensing. Astrophys. J. 404, 441 (1993).
Seitz, C. & Schneider, P. Steps towards nonlinear cluster inversion through gravitational distortions II. Generalization of the Kaiser and Squires method. Astron. Astrophys. 297, 287 (1995).
Bartelmann, M. & Schneider, P. Weak gravitational lensing. Phys. Rep. 340, 291–472 (2001).
Hamana, T., Shirasaki, M. & Lin, Y.-T. Weak-lensing clusters from hsc survey first-year data: mitigating the dilution effect of foreground and cluster-member galaxies. Publ. Astron. Soc. Jpn 72, 78 (2020).
Jeffrey, N. et al. Dark Energy Survey Year 3 results: curved-sky weak lensing mass map reconstruction. Mon. Not. R. Astron. Soc. 505, 4626–4645 (2021).
Wright, A. H. et al. The fifth data release of the Kilo Degree Survey: multi-epoch optical/NIR imaging covering wide and legacy-calibration fields. Astron. Astrophys. 686, A170 (2024).
Jarvis, M. et al. The DES Science Verification weak lensing shear catalogues. Mon. Not. R. Astron. Soc. 460, 2245–2281 (2016).
Schrabback, T. et al. Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS. Astron. Astrophys. 516, A63 (2010).
Amara, A. et al. The COSMOS density field: a reconstruction using both weak lensing and galaxy distributions. Mon. Not. R. Astron. Soc. 424, 553–563 (2012).
Ilbert, O. et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey. Astron. Astrophys. 457, 841–856 (2006).
Arnouts, S. & Ilbert, O. LePHARE: photometric analysis for redshift estimate. Astrophysics Source Code Library https://www.cfht.hawaii.edu/~arnouts/LEPHARE/lephare.html (2011).
Starck, J.-L., Moudden, Y., Abrial, P. & Nguyen, M. Wavelets, ridgelets and curvelets on the sphere. Astron. Astrophys. 446, 1191–1204 (2006).
Bond, J. R., Kofman, L. & Pogosyan, D. How filaments of galaxies are woven into the cosmic web. Nature 380, 603–606 (1996).
Nightingale, J. W. et al. The cosmos-web lens survey (COWLS) I: discovery of >100 high redshift strong lenses in contiguous jwst imaging. Mon. Not. R. Astron. Soc. 543, 203–222 (2025).
Mahler, G. et al. The COSMOS-Web Lens Survey (COWLS) II: Depth, resolution, and NIR coverage from JWST reveals17 spectacular lenses. Mon. Not. R. Astron. Soc. 544, L8–L14 (2025).
Hogg, N. B. et al. The COSMOS-Web Lens Survey(COWLS) III: forecasts versus data. Mon. Not. R. Astron. Soc. 544, 782–798 (2025).
Schneider, P., Waerbeke, L. & Mellier, Y. B-modes in cosmic shear from source redshift clustering. Astron. Astrophys. 389, 729–741 (2002).
Gozaliasl, G. et al. Chandra centres for COSMOS X-ray galaxy groups: differences in stellar properties between central dominant and offset brightest group galaxies. Mon. Not. R. Astron. Soc. 483, 3545–3565 (2019).
Weaver, J. R. et al. Cosmos2020: a panchromatic view of the universe to z10 from two complementary catalogs. Astrophys. J. Suppl. Ser. 258, 11 (2022).
Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).
Wechsler, R. H. & Tinker, J. L. The connection between galaxies and their dark matter halos. Annu. Rev. Astron. Astrophys. 56, 435–487 (2018).
Capak, P. et al. The first release cosmos optical and near-IR data and catalog. Astrophys. J. Suppl. Ser. 172, 99 (2007).
Franco, M. et al. Unveiling the distant Universe: characterizing z ≥ 9 galaxies in the first epoch of COSMOS-Web. Astrophys. J. 973, 23 (2024).
Bushouse, H. et al. JWST calibration pipeline. Zenodo https://doi.org/10.5281/zenodo.6984365 (2024)
Koekemoer, A. M. et al. CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey—the Hubble Space Telescope observations, imaging data products, and mosaics. Astrophys. J. Suppl. Ser. 197, 36 (2011).
Rhodes, J. D. et al. The stability of the point-spread function of the advanced camera for surveys on the Hubble Space Telescope and implications for weak gravitational lensing. Astrophys. J. Suppl. Ser. 172, 203–218 (2007).
Rhodes, J., Refregier, A. & Groth, E. J. Weak lensing measurements: a revisited method and application tohubble space telescope images. Astrophys. J. 536, 79 (2000).
Leauthaud, A. et al. Weak gravitational lensing with COSMOS: galaxy selection and shape measurements. Astrophys. J. 172, 219–238 (2007).
Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. 117, 393–404 (1996).
Berman, E. & McCleary, J. ShOpt.jl: a Julia package for empirical point spread function characterization of JWST NIRCam data. J. Open Source Softw. 9, 6144 (2024).
Bertin, E. Automated morphometry with SExtractor and PSFEx. In Astronomical Society of the Pacific Conference Series (eds Evans, I. N. et al.) Vol. 442, 435 (Astronomical Society of the Pacific, 2011).
Perrin, M. D. et al. Updated point spread function simulations for JWST with WebbPSF. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (eds Oschmann, J. et al.) Vol. 9143, 91433 (Society of Photo-Optical Instrumentation Engineers, 2014).
Harvey, D. et al. Reconciling galaxy cluster shapes, measured by theorists versus observers. Mon. Not. R. Astron. Soc. 500, 2627–2644 (2021).
Harvey, D. R. & Massey, R. Weak gravitational lensing measurements of Abell 2744 using JWST and shear measurement algorithm pyRRG-JWST. Mon. Not. R. Astron. Soc. 529, 802–809 (2024).
High, F. W., Rhodes, J., Massey, R. & Ellis, R. Pixelation effects in weak lensing. Publ. Astron. Soc. Pac. 119, 1295–1307 (2007).
Massey, R. et al. Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation). Mon. Not. R. Astron. Soc. 429, 661–678 (2013).
Pires, S. et al. FAst STatistics for weak Lensing (FASTLens): fast method for weak lensing statistics and map making. Mon. Not. R. Astron. Soc. 395, 1265–1279 (2009).
Pires, S. et al. Euclid: reconstruction of weak-lensing mass maps for non-Gaussianity studies. Astron. Astrophys. 638, A141 (2020).
Starck, J.-L., Pires, S. & Réfrégier, A. Weak lensing mass reconstruction using wavelets. Astron. Astrophys. 451, 1139–1150 (2006).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
Aoyama, S. D., Osato, K. & Shirasaki, M. Denoising weak lensing mass maps with diffusion model: systematic comparison with generative adversarial network. Preprint at https://arxiv.org/abs/2505.00345 (2025).
Cha, S. et al. Weak-lensing mass reconstruction of galaxy clusters with a convolutional neural network. II. Application to next-generation wide-field surveys. Astrophys. J. 981, 52 (2025).
Leroy, G., Pires, S., Pratt, G. W. & Giocoli, C. Fast multi-scale galaxy cluster detection with weak lensing: towards a mass-selected sample. Astron. Astrophys. 678, A125 (2023).
Acknowledgements
D.S. carried out this research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). Support for this work was provided by NASA grants JWST-GO-01727 and HST-AR15802 awarded by the Space Telescope Science Institute, operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. G.L., R.M. and M.v.W.-K. acknowledge support from STFC via grant ST/X001075/1, and the UK Space Agency via grant ST/W002612/1 and InnovateUK (grant no. TS/Y014693/1). D.H. was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 521107294. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101148925. French COSMOS team members are partly supported by the Centre National d’Etudes Spatiales (CNES). O.I. acknowledges the funding of the French Agence Nationale de la Recherche for the project iMAGE (grant ANR-22-CE31-0007). G.M. is supported in Durham by STFC via grant ST/X001075/1, and the UK Space Agency via grant ST/X001997/1. S.J. acknowledges the European Union’ Marie Skłodowska-Curie Actions grant no. 101060888, and the Villum Fonden research grants 37440 and 13160. N.E.D. acknowledges support from NSF grants LEAPS-2532703 and AST-2510993. D.B.S. gratefully acknowledges support from NSF Grant 2407752. Z.D.L. acknowledges support from STFC studentship ST/Y509346/1. J.R.W. acknowledges that support for this work was provided by The Brinson Foundation through a Brinson Prize Fellowship grant.
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Judit Prat and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Scognamiglio, D., Leroy, G., Harvey, D. et al. An ultra-high-resolution map of (dark) matter. Nat Astron (2026). https://doi.org/10.1038/s41550-025-02763-9
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41550-025-02763-9