An ultra-high-resolution map of (dark) matter

13 min read Original article ↗

Data availability

The JWST data (Programme ID: General Observer 1727) are publicly available at https://exchg.calet.org/cosmosweb-public/DR0.5/. The HST data (Programme IDs: General Observer 9822 and 10092) are publicly available at http://irsa.ipac.caltech.edu/data/COSMOS/. The XMM-Newton dataset (Programme ID: 020336) is publicly available in staged releases via the IPAC/IRSA website at https://irsa.ipac.caltech.edu/data/COSMOS/. The Chandra data (Programme IDs: 901037) are publicly available at https://irsa.ipac.caltech.edu/data/COSMOS/gator_docs/cosmos_chandraxid_colDescriptions.html. The weak lensing mass maps are publicly available with this article as Supplementary Data 16.

References

  1. Massey, R. et al. The Shear Testing Programme 2: factors affecting high-precision weak-lensing analyses. Mon. Not. R. Astron. Soc. 376, 13–38 (2007).

    Article  ADS  Google Scholar 

  2. Oguri, M. et al. Two- and three-dimensional wide-field weak lensing mass maps from the Hyper Suprime-Cam Subaru Strategic Program S16A data. Publ. Astron. Soc. Jpn 70, S26 (2017).

    Article  Google Scholar 

  3. Martinet, N. et al. KiDS-450: cosmological constraints from weak-lensing peak statistics—II: inference from shear peaks using N-body simulations. Mon. Not. R. Astron. Soc. 474, 712–730 (2018).

    Article  ADS  Google Scholar 

  4. Scoville, N. et al. COSMOS: Hubble Space Telescope observations. Astrophys. J. Suppl. Ser. 172, 38–45 (2007).

    Article  ADS  Google Scholar 

  5. Finoguenov, A. et al. The XMM-Newton wide-field survey in the COSMOS field: statistical properties of clusters of galaxies. Astrophys. J. 172, 182–195 (2007).

    Article  Google Scholar 

  6. Massey, R. et al. Dark matter maps reveal cosmic scaffolding. Nature 445, 286–290 (2007).

    Article  ADS  Google Scholar 

  7. Laigle, C. et al. The cosmos2015 catalog: exploring the 1 < z < 6 universe with half a million galaxies. Astrophys. J. Suppl. Ser. 224, 24 (2016).

    Article  ADS  Google Scholar 

  8. Smolčić, V. et al. The VLA-COSMOS 3 GHz Large Project: continuum data and source catalog release. Astron. Astrophys. 602, A1 (2017).

    Article  Google Scholar 

  9. Liu, D. et al. Automated mining of the alma archive in the cosmos field (A3COSMOS). I. Robust ALMA continuum photometry catalogs and stellar mass and star formation properties for ~700 galaxies at z = 0.5–6. Astrophys. J. Suppl. Ser. 244, 40 (2019).

    Article  ADS  Google Scholar 

  10. Casey, C. M. et al. COSMOS-Web: an overview of the JWST Cosmic Origins Survey. Astrophys. J. 954, 31 (2023).

    Article  ADS  Google Scholar 

  11. Franco, M. et al. COSMOS-Web: comprehensive data reduction for wide-area JWST NIRCam imaging. Preprint at https://arxiv.org/abs/2506.03256 (2025).

  12. Shuntov, M. et al. COSMOS2025: the COSMOS-Web galaxy catalog of photometry, morphology, redshifts, and physical parameters from JWST, HST, and ground-based imaging. Preprint at https://arxiv.org/abs/2506.03243 (2025).

  13. Harish, S. et al. COSMOS-Web: MIRI data reduction and number counts at 7.7 μm Using JWST. Astrophys. J. 992, 45 (2025).

    Article  ADS  Google Scholar 

  14. Kaiser, N. & Squires, G. Mapping the dark matter with weak gravitational lensing. Astrophys. J. 404, 441 (1993).

    Article  ADS  Google Scholar 

  15. Seitz, C. & Schneider, P. Steps towards nonlinear cluster inversion through gravitational distortions II. Generalization of the Kaiser and Squires method. Astron. Astrophys. 297, 287 (1995).

    ADS  Google Scholar 

  16. Bartelmann, M. & Schneider, P. Weak gravitational lensing. Phys. Rep. 340, 291–472 (2001).

    Article  ADS  Google Scholar 

  17. Hamana, T., Shirasaki, M. & Lin, Y.-T. Weak-lensing clusters from hsc survey first-year data: mitigating the dilution effect of foreground and cluster-member galaxies. Publ. Astron. Soc. Jpn 72, 78 (2020).

    Article  ADS  Google Scholar 

  18. Jeffrey, N. et al. Dark Energy Survey Year 3 results: curved-sky weak lensing mass map reconstruction. Mon. Not. R. Astron. Soc. 505, 4626–4645 (2021).

    Article  ADS  Google Scholar 

  19. Wright, A. H. et al. The fifth data release of the Kilo Degree Survey: multi-epoch optical/NIR imaging covering wide and legacy-calibration fields. Astron. Astrophys. 686, A170 (2024).

    Article  Google Scholar 

  20. Jarvis, M. et al. The DES Science Verification weak lensing shear catalogues. Mon. Not. R. Astron. Soc. 460, 2245–2281 (2016).

    Article  ADS  Google Scholar 

  21. Schrabback, T. et al. Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS. Astron. Astrophys. 516, A63 (2010).

    Article  Google Scholar 

  22. Amara, A. et al. The COSMOS density field: a reconstruction using both weak lensing and galaxy distributions. Mon. Not. R. Astron. Soc. 424, 553–563 (2012).

    Article  ADS  Google Scholar 

  23. Ilbert, O. et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey. Astron. Astrophys. 457, 841–856 (2006).

    Article  ADS  Google Scholar 

  24. Arnouts, S. & Ilbert, O. LePHARE: photometric analysis for redshift estimate. Astrophysics Source Code Library https://www.cfht.hawaii.edu/~arnouts/LEPHARE/lephare.html (2011).

  25. Starck, J.-L., Moudden, Y., Abrial, P. & Nguyen, M. Wavelets, ridgelets and curvelets on the sphere. Astron. Astrophys. 446, 1191–1204 (2006).

    Article  ADS  Google Scholar 

  26. Bond, J. R., Kofman, L. & Pogosyan, D. How filaments of galaxies are woven into the cosmic web. Nature 380, 603–606 (1996).

    Article  ADS  Google Scholar 

  27. Nightingale, J. W. et al. The cosmos-web lens survey (COWLS) I: discovery of >100 high redshift strong lenses in contiguous jwst imaging. Mon. Not. R. Astron. Soc. 543, 203–222 (2025).

    Article  ADS  Google Scholar 

  28. Mahler, G. et al. The COSMOS-Web Lens Survey (COWLS) II: Depth, resolution, and NIR coverage from JWST reveals17 spectacular lenses. Mon. Not. R. Astron. Soc. 544, L8–L14 (2025).

    Article  ADS  Google Scholar 

  29. Hogg, N. B. et al. The COSMOS-Web Lens Survey(COWLS) III: forecasts versus data. Mon. Not. R. Astron. Soc. 544, 782–798 (2025).

    Article  ADS  Google Scholar 

  30. Schneider, P., Waerbeke, L. & Mellier, Y. B-modes in cosmic shear from source redshift clustering. Astron. Astrophys. 389, 729–741 (2002).

    Article  ADS  Google Scholar 

  31. Gozaliasl, G. et al. Chandra centres for COSMOS X-ray galaxy groups: differences in stellar properties between central dominant and offset brightest group galaxies. Mon. Not. R. Astron. Soc. 483, 3545–3565 (2019).

    Article  ADS  Google Scholar 

  32. Weaver, J. R. et al. Cosmos2020: a panchromatic view of the universe to z10 from two complementary catalogs. Astrophys. J. Suppl. Ser. 258, 11 (2022).

    Article  ADS  Google Scholar 

  33. Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).

    Article  ADS  Google Scholar 

  34. Wechsler, R. H. & Tinker, J. L. The connection between galaxies and their dark matter halos. Annu. Rev. Astron. Astrophys. 56, 435–487 (2018).

    Article  ADS  Google Scholar 

  35. Capak, P. et al. The first release cosmos optical and near-IR data and catalog. Astrophys. J. Suppl. Ser. 172, 99 (2007).

    Article  ADS  Google Scholar 

  36. Franco, M. et al. Unveiling the distant Universe: characterizing z ≥ 9 galaxies in the first epoch of COSMOS-Web. Astrophys. J. 973, 23 (2024).

    Article  ADS  Google Scholar 

  37. Bushouse, H. et al. JWST calibration pipeline. Zenodo https://doi.org/10.5281/zenodo.6984365 (2024)

  38. Koekemoer, A. M. et al. CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey—the Hubble Space Telescope observations, imaging data products, and mosaics. Astrophys. J. Suppl. Ser. 197, 36 (2011).

    Article  ADS  Google Scholar 

  39. Rhodes, J. D. et al. The stability of the point-spread function of the advanced camera for surveys on the Hubble Space Telescope and implications for weak gravitational lensing. Astrophys. J. Suppl. Ser. 172, 203–218 (2007).

    Article  ADS  Google Scholar 

  40. Rhodes, J., Refregier, A. & Groth, E. J. Weak lensing measurements: a revisited method and application tohubble space telescope images. Astrophys. J. 536, 79 (2000).

    Article  ADS  Google Scholar 

  41. Leauthaud, A. et al. Weak gravitational lensing with COSMOS: galaxy selection and shape measurements. Astrophys. J. 172, 219–238 (2007).

  42. Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. 117, 393–404 (1996).

    ADS  Google Scholar 

  43. Berman, E. & McCleary, J. ShOpt.jl: a Julia package for empirical point spread function characterization of JWST NIRCam data. J. Open Source Softw. 9, 6144 (2024).

    Article  ADS  Google Scholar 

  44. Bertin, E. Automated morphometry with SExtractor and PSFEx. In Astronomical Society of the Pacific Conference Series (eds Evans, I. N. et al.) Vol. 442, 435 (Astronomical Society of the Pacific, 2011).

  45. Perrin, M. D. et al. Updated point spread function simulations for JWST with WebbPSF. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (eds Oschmann, J. et al.) Vol. 9143, 91433 (Society of Photo-Optical Instrumentation Engineers, 2014).

  46. Harvey, D. et al. Reconciling galaxy cluster shapes, measured by theorists versus observers. Mon. Not. R. Astron. Soc. 500, 2627–2644 (2021).

    Article  ADS  Google Scholar 

  47. Harvey, D. R. & Massey, R. Weak gravitational lensing measurements of Abell 2744 using JWST and shear measurement algorithm pyRRG-JWST. Mon. Not. R. Astron. Soc. 529, 802–809 (2024).

    Article  ADS  Google Scholar 

  48. High, F. W., Rhodes, J., Massey, R. & Ellis, R. Pixelation effects in weak lensing. Publ. Astron. Soc. Pac. 119, 1295–1307 (2007).

    Article  ADS  Google Scholar 

  49. Massey, R. et al. Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation). Mon. Not. R. Astron. Soc. 429, 661–678 (2013).

    Article  ADS  Google Scholar 

  50. Pires, S. et al. FAst STatistics for weak Lensing (FASTLens): fast method for weak lensing statistics and map making. Mon. Not. R. Astron. Soc. 395, 1265–1279 (2009).

    Article  ADS  Google Scholar 

  51. Pires, S. et al. Euclid: reconstruction of weak-lensing mass maps for non-Gaussianity studies. Astron. Astrophys. 638, A141 (2020).

    Article  Google Scholar 

  52. Starck, J.-L., Pires, S. & Réfrégier, A. Weak lensing mass reconstruction using wavelets. Astron. Astrophys. 451, 1139–1150 (2006).

    Article  ADS  Google Scholar 

  53. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Article  MathSciNet  Google Scholar 

  54. Aoyama, S. D., Osato, K. & Shirasaki, M. Denoising weak lensing mass maps with diffusion model: systematic comparison with generative adversarial network. Preprint at https://arxiv.org/abs/2505.00345 (2025).

  55. Cha, S. et al. Weak-lensing mass reconstruction of galaxy clusters with a convolutional neural network. II. Application to next-generation wide-field surveys. Astrophys. J. 981, 52 (2025).

    Article  ADS  Google Scholar 

  56. Leroy, G., Pires, S., Pratt, G. W. & Giocoli, C. Fast multi-scale galaxy cluster detection with weak lensing: towards a mass-selected sample. Astron. Astrophys. 678, A125 (2023).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

D.S. carried out this research at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). Support for this work was provided by NASA grants JWST-GO-01727 and HST-AR15802 awarded by the Space Telescope Science Institute, operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. G.L., R.M. and M.v.W.-K. acknowledge support from STFC via grant ST/X001075/1, and the UK Space Agency via grant ST/W002612/1 and InnovateUK (grant no. TS/Y014693/1). D.H. was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 521107294. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101148925. French COSMOS team members are partly supported by the Centre National d’Etudes Spatiales (CNES). O.I. acknowledges the funding of the French Agence Nationale de la Recherche for the project iMAGE (grant ANR-22-CE31-0007). G.M. is supported in Durham by STFC via grant ST/X001075/1, and the UK Space Agency via grant ST/X001997/1. S.J. acknowledges the European Union’ Marie Skłodowska-Curie Actions grant no. 101060888, and the Villum Fonden research grants 37440 and 13160. N.E.D. acknowledges support from NSF grants LEAPS-2532703 and AST-2510993. D.B.S. gratefully acknowledges support from NSF Grant 2407752. Z.D.L. acknowledges support from STFC studentship ST/Y509346/1. J.R.W. acknowledges that support for this work was provided by The Brinson Foundation through a Brinson Prize Fellowship grant.

Author information

Author notes

  1. These authors contributed equally: Diana Scognamiglio, Gavin Leroy, David Harvey.

Authors and Affiliations

  1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

    Diana Scognamiglio, Jason Rhodes & Eric Huff

  2. Institute for Computational Cosmology, Department of Physics, Durham University, Durham, UK

    Gavin Leroy, Richard Massey, Leo W. H. Fung, Qiuhan He, Zane D. Lentz, Guillaume Mahler & Maximilian von Wietersheim-Kramsta

  3. Laboratoire d’Astrophysique, École Polytechnique Fédérale de Lausanne, Observatoire de Sauverny, Versoix, Switzerland

    David Harvey

  4. Department of Astronomy, The University of Texas at Austin, Austin, TX, USA

    Hollis B. Akins

  5. Instituto de Física y Astronomía, Facultad de Ciencias, Valparaíso, Chile

    Malte Brinch

  6. Millennium Nucleus for Galaxies (MINGAL), Valparaíso, Chile

    Malte Brinch

  7. Department of Physics, Northeastern University, Boston, MA, USA

    Edward Berman & Jacqueline McCleary

  8. Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA

    Caitlin M. Casey & Crystal L. Martin

  9. The University of Texas at Austin, Austin, TX, USA

    Caitlin M. Casey & Maximilien Franco

  10. Cosmic Dawn Center (DAWN), Copenhagen, Denmark

    Caitlin M. Casey, Shouwen Jin & Marko Shuntov

  11. Department of Physics and Astronomy, University of Hawaii, Hilo, Hilo, HI, USA

    Nicole E. Drakos

  12. Caltech/IPAC, Pasadena, CA, USA

    Andreas L. Faisst

  13. Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM, Gif-sur-Yvette, France

    Maximilien Franco & Sandrine Pires

  14. Department of Computer Science, Aalto University, Espoo, Finland

    Ghassem Gozaliasl

  15. Department of Physics, Faculty of Science, University of Helsinki, Helsinki, Finland

    Ghassem Gozaliasl

  16. Kapteyn Astronomical Institute, University of Groningen, Groningen, the Netherlands

    Qiuhan He

  17. Department of Physics and Astronomy, University of California, Riverside, Riverside, CA, USA

    Hossein Hatamnia & Bahram Mobasher

  18. Institute of Astronomy, University of Cambridge, Cambridge, UK

    Natalie B. Hogg

  19. Kavli Institute for Cosmology, University of Cambridge, Cambridge, UK

    Natalie B. Hogg

  20. Laboratoire univers et particules de Montpellier, CNRS, Université de Montpellier, Montpellier, France

    Natalie B. Hogg

  21. Aix Marseille Univ., CNRS, CNES, LAM, Marseille, France

    Olivier Ilbert

  22. Laboratory for Multiwavelength Astrophysics, School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY, USA

    Jeyhan S. Kartaltepe

  23. Space Telescope Science Institute, Baltimore, MD, USA

    Anton M. Koekemoer

  24. DTU Space, Technical University of Denmark, Kgs. Lyngby, Denmark

    Shouwen Jin

  25. NASA Goddard Space Flight Center, Greenbelt, MD, USA

    Erini Lambrides

  26. Department of Astronomy and Astrophysics, University of California, Santa Cruz, Santa Cruz, CA, USA

    Alexie Leauthaud & Brant E. Robertson

  27. Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, China

    Daizhong Liu

  28. STAR Institute, Liège, Belgium

    Guillaume Mahler

  29. Centre for Extragalactic Astronomy, Durham University, Durham, UK

    Guillaume Mahler

  30. Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth, UK

    Claudia Maraston

  31. School of Mathematics, Statistics and Physics, Newcastle University, Newcastle-upon-Tyne, UK

    James Nightingale

  32. Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden

    Louise Paquereau

  33. Institut d’Astrophysique de Paris, Paris, France

    Louise Paquereau

  34. Institute for Astronomy, University of Hawaii, Honolulu, HI, USA

    David B. Sanders

  35. Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN, USA

    Claudia Scarlata

  36. Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

    Marko Shuntov

  37. Dipartimento di Fisica e Astronomia ‘A. Righi’, Alma Mater Studiorum Università di Bologna, Bologna, Italy

    Greta Toni

  38. INAF – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Bologna, Italy

    Greta Toni

  39. Zentrum für Astronomie, Universität Heidelberg, Heidelberg, Germany

    Greta Toni

  40. MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA, USA

    John R. Weaver

  41. Department of Astronomy, University of Massachusetts, Amherst, MA, USA

    John R. Weaver

Authors

  1. Diana Scognamiglio
  2. Gavin Leroy
  3. David Harvey
  4. Richard Massey
  5. Jason Rhodes
  6. Hollis B. Akins
  7. Malte Brinch
  8. Edward Berman
  9. Caitlin M. Casey
  10. Nicole E. Drakos
  11. Andreas L. Faisst
  12. Maximilien Franco
  13. Leo W. H. Fung
  14. Ghassem Gozaliasl
  15. Qiuhan He
  16. Hossein Hatamnia
  17. Eric Huff
  18. Natalie B. Hogg
  19. Olivier Ilbert
  20. Jeyhan S. Kartaltepe
  21. Anton M. Koekemoer
  22. Shouwen Jin
  23. Erini Lambrides
  24. Alexie Leauthaud
  25. Zane D. Lentz
  26. Daizhong Liu
  27. Guillaume Mahler
  28. Claudia Maraston
  29. Crystal L. Martin
  30. Jacqueline McCleary
  31. James Nightingale
  32. Bahram Mobasher
  33. Louise Paquereau
  34. Sandrine Pires
  35. Brant E. Robertson
  36. David B. Sanders
  37. Claudia Scarlata
  38. Marko Shuntov
  39. Greta Toni
  40. Maximilian von Wietersheim-Kramsta
  41. John R. Weaver

Contributions

D.S. led and coordinated the project. C.M.C. and J.S.K. led the observing proposal. M.F. processed the raw JWST observations, and M.S., O.I., H.B.A., J.R.W. and L.P. produced the photometric catalogues used in this analysis. D.H. measured galaxy shapes. G.L. and D.S. generated the mass maps using a Kaiser–Squires technique enhanced by S.P. D.S. created the galaxy density map with contribution from A.F. G.L. and D.S. identified galaxy clusters. D.S., G.L., D.H., R.M., J.R. and E.H. interpreted the maps. D.S., G.L. and R.M. wrote the first draft of the paper, on which all authors commented.

Corresponding author

Correspondence to Diana Scognamiglio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Judit Prat and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scognamiglio, D., Leroy, G., Harvey, D. et al. An ultra-high-resolution map of (dark) matter. Nat Astron (2026). https://doi.org/10.1038/s41550-025-02763-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41550-025-02763-9