Adams, H. D. et al. Climate-induced tree mortality: Earth system consequences. Eos Trans. Am. Geophys. Union 91, 153–154 (2010).
McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).
Ruiz-Benito, P. et al. Climate-and successional-related changes in functional composition of European forests are strongly driven by tree mortality. Glob. Change Biol. 23, 4162–4176 (2017).
Needham, J. F., Chambers, J., Fisher, R., Knox, R. & Koven, C. D. Forest responses to simulated elevated CO2 under alternate hypotheses of size- and age-dependent mortality. Glob. Change Biol. 26, 5734–5753 (2020).
Hiltner, U., Huth, A. & Fischer, R. Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing. Biogeosciences 19, 1891–1911 (2022).
Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
Bauman, D. et al. Tropical tree mortality has increased with rising atmospheric water stress. Nature 608, 528–533 (2022).
van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the western United States. Science 323, 521–524 (2009).
McDowell, N. G. et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Change 6, 295–300 (2015).
Senf, C. et al. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat. Commun. 9, 4978 (2018).
Peng, C. H. et al. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Clim. Change 1, 467–471 (2011).
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
Hammond, W. M. et al. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nat. Commun. 13, 1761 (2022).
Hartmann, H. et al. Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annu. Rev. Plant Biol. 73, 673–702 (2022).
Yu, K. L. et al. Pervasive decreases in living vegetation carbon turnover time across forest climate zones. Proc. Natl Acad. Sci. USA 116, 24662–24667 (2019).
Ma, Z. H. et al. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl Acad. Sci. USA 109, 2423–2427 (2012).
Rammig, A. & Lapola, D. M. The declining tropical carbon sink. Nat. Clim. Change 11, 727–728 (2021).
Network, I. T. M. Towards a global understanding of tree mortality. N. Phytol. 245, 2377–2392 (2025).
Pugh, T. A. M. et al. Understanding the uncertainty in global forest carbon turnover. Biogeosciences 17, 3961–3989 (2020).
Wei, N. et al. Evolution of uncertainty in terrestrial carbon storage in Earth system models from CMIP5 to CMIP6. J. Clim. 35, 5483–5499 (2022).
Gallagher, R. V., Allen, S. & Wright, I. J. Safety margins and adaptive capacity of vegetation to climate change. Sci. Rep. 9, 8241 (2019).
King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M. & Brown, J. R. The role of climate variability in Australian drought. Nat. Clim. Change 10, 177–179 (2020).
Peters, J. M. R. et al. Living on the edge: A continental-scale assessment of forest vulnerability to drought. Glob. Change Biol. 27, 3620–3641 (2021).
Larter, M. et al. Extreme aridity pushes trees to their physical limits. Plant Physiol. 168, 804–807 (2015).
Crombie, D., Tippett, J. & Hill, T. Dawn water potential and root depth of trees and understorey species in southwestern Australia. Aust. J. Bot. 36, 621–631 (1988).
Myers, B. A. et al. Seasonal variation in water relations of trees of differing leaf phenology in a Wet-dry tropical savanna near Darwin, Northern Australia. Aust. J. Bot. 45, 225–240 (1997).
Lawes, M. J. et al. Appraising widespread resprouting but variable levels of postfire seeding in Australian ecosystems: the effect of phylogeny, fire regime and productivity. Aust. J. Bot. 70, 114–130 (2022).
Yang, S., Ooi, M. K. J., Falster, D. S. & Cornwell, W. K. Continental-scale empirical evidence for relationships between fire response strategies and fire frequency. N. Phytol. 246, 528–542 (2025).
Forzieri, G., Dakos, V., McDowell, N. G., Ramdane, A. & Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 608, 534–539 (2022).
De Kauwe, M. G. et al. Identifying areas at risk of drought-induced tree mortality across South-Eastern Australia. Glob. Change Biol. 26, 5716–5733 (2020).
The Dead Tree Detective. Western Sydney University (accessed 5 December 2025); https://biocollect.ala.org.au/acsa/project/index/77285a13-e231-49e8-b212-660c66c74bac
Yan, Y. et al. Climate-induced tree-mortality pulses are obscured by broad-scale and long-term greening. Nat. Ecol. Evol. 8, 912–923 (2024).
Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).
Luo, Y. & Chen, H. Y. H. Observations from old forests underestimate climate change effects on tree mortality. Nat. Commun. 4, 1655 (2013).
Luo, Y. & Chen, H. Y. H. Climate change-associated tree mortality increases without decreasing water availability. Ecol. Lett. 18, 1207–1215 (2015).
Trouvé, R., Baker, P. J., Ducey, M. J., Robinson, A. P. & Nitschke, C. R. Global warming reduces the carrying capacity of the tallest angiosperm species (Eucalyptus regnans). Nat. Commun. 16, 7440 (2025).
Thorpe, H. C. & Daniels, L. D. Long-term trends in tree mortality rates in the Alberta foothills are driven by stand development. Can. J. Res. 42, 1687–1696 (2012).
Doughty, C. E. et al. Tropical forests are approaching critical temperature thresholds. Nature 621, 105–111 (2023).
Ping, J. et al. Enhanced causal effect of ecosystem photosynthesis on respiration during heatwaves. Sci. Adv. 9, eadi6395 (2023).
Hicke, J. A. & Zeppel, M. J. B. Climate-driven tree mortality: insights from the pinon pine die-off in the United States. N. Phytol. 200, 301–303 (2013).
Grossiord, C. et al. Plant responses to rising vapor pressure deficit. N. Phytol. 226, 1550–1566 (2020).
Zhou, S., Zhang, Y., Williams, A. P. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, eaau5740 (2019).
Will, R. E., Wilson, S. M., Zou, C. B. & Hennessey, T. C. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone. N. Phytol. 200, 366–374 (2013).
McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).
Carle, H. et al. Aboveground biomass in Australian tropical forests now a net carbon source. Nature 646, 611–618 (2025).
Zuleta, D. et al. Individual tree damage dominates mortality risk factors across six tropical forests. N. Phytol. 233, 705–721 (2021).
Murphy, H. T., Bradford, M. G., Dalongeville, A., Ford, A. J. & Metcalfe, D. J. No evidence for long-term increases in biomass and stem density in the tropical rain forests of Australia. J. Ecol. 101, 1589–1597 (2013).
Wright, S. J. et al. Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010).
Ruger, N. et al. Beyond the fast-slow continuum: demographic dimensions structuring a tropical tree community. Ecol. Lett. 21, 1075–1084 (2018).
Ruger, N. et al. Demographic trade-offs predict tropical forest dynamics. Science 368, 165–168 (2020).
Callahan, R. P. et al. Forest vulnerability to drought controlled by bedrock composition. Nat. Geosci. 15, 714–719 (2022).
Liu, H. et al. Hydraulic traits are coordinated with maximum plant height at the global scale. Sci. Adv. 5, eaav1332 (2019).
Givnish, T. J., Wong, S. C., Stuart-Williams, H., Holloway-Phillips, M. & Farquhar, G. D. Determinants of maximum tree height in Eucalyptus species along a rainfall gradient in Victoria, Australia. Ecology 95, 2991–3007 (2014).
Iida, Y. et al. Linking functional traits and demographic rates in a subtropical tree community: the importance of size dependency. J. Ecol. 102, 641–650 (2014).
Muller-Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).
Piponiot, C. et al. Distribution of biomass dynamics in relation to tree size in forests across the world. N. Phytol. 234, 1664–1677 (2022).
Gora, E. M. & Esquivel-Muelbert, A. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nat. Plants 7, 384–391 (2021).
Lu, R. L. et al. The U-shaped pattern of size-dependent mortality and its correlated factors in a subtropical monsoon evergreen forest. J. Ecol. 109, 2421–2433 (2021).
Hülsmann, L. et al. Latitudinal patterns in stabilizing density dependence of forest communities. Nature 627, 564–571 (2024).
Barrere, J. et al. Functional traits and climate drive interspecific differences in disturbance-induced tree mortality. Glob. Change Biol. 29, 2836–2851 (2023).
Coomes, D. A., Duncan, R. P., Allen, R. B. & Truscott, J. Disturbances prevent stem size-density distributions in natural forests from following scaling relationships. Ecol. Lett. 6, 980–989 (2003).
Coomes, D. A. & Allen, R. B. Mortality and tree-size distributions in natural mixed-age forests. J. Ecol. 95, 27–40 (2007).
Trouvé, R., Oborne, L. & Baker, P. J. The effect of species, size, and fire intensity on tree mortality within a catastrophic bushfire complex. Ecol. Appl. 31, e02383 (2021).
Barlow, J., Peres, C. A., Lagan, B. O. & Haugaasen, T. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecol. Lett. 6, 6–8 (2003).
Bendall, E. R. et al. Demographic change and loss of big trees in resprouting eucalypt forests exposed to megadisturbance. Glob. Ecol. Biogeogr. 33, e13842 (2024).
Murphy, B. P. et al. Using a demographic model to project the long-term effects of fire management on tree biomass in Australian savannas. Ecol. Monogr. 93, e1564 (2023).
Prior, L. D., Murphy, B. P. & Russell-Smith, J. Environmental and demographic correlates of tree recruitment and mortality in north Australian savannas. Ecol. Manag. 257, 66–74 (2009).
Bialic-Murphy, L. et al. The pace of life for forest trees. Science 386, 92–98 (2024).
Johnson, D. J. et al. Climate sensitive size-dependent survival in tropical trees. Nat. Ecol. Evol. 2, 1436–1442 (2018).
Oliver, C. D. & Larson, B. A. 'Forest Stand Dynamics, Update Edition'. in Yale School of the Environment Other Publications 1 (1996); https://elischolar.library.yale.edu/fes_pubs/1
Wang, J., Taylor, A. R. & D’Orangeville, L. Warming-induced tree growth may help offset increasing disturbance across the Canadian boreal forest. Proc. Natl Acad. Sci. USA 120, e2212780120 (2023).
Trouvé, R., Bontemps, J.-D., Collet, C., Seynave, I. & Lebourgeois, F. Growth partitioning in forest stands is affected by stand density and summer drought in sessile oak and Douglas-fir. Ecol. Manag. 334, 358–368 (2014).
Chen, L. et al. Global increase in the occurrence and impact of multiyear droughts. Science 387, 278–284 (2025).
Yuan, X. et al. A global transition to flash droughts under climate change. Science 380, 187–191 (2023).
Yu, K. L. et al. Field-based tree mortality constraint reduces estimates of model-projected forest carbon sinks. Nat. Commun. 13, 2094 (2022).
Bugmann, H. et al. Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale. Ecosphere 10, e02616 (2019).
Moorcroft, P. R., Hurtt, G. C. & Pacala, S. W. A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecol. Monogr. 71, 557–585 (2001).
Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. N. Phytol. 198, 957–969 (2013).
Forrester, D. I., England, J. R., Paul, K. I. & Roxburgh, S. H. Sensitivity analysis of the FullCAM model: Context dependency and implications for model development to predict Australia’s forest carbon stocks. Ecol. Model. 489, 110631 (2024).
Case studies forestry and urban tree management projects. dimap (accessed 5 December 2025); https://dimap.asia/forestry-tasmania-usage-of-full-waveform-lidar-in-forestry-taxation/
Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).
Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. FAO Irrigation and Drainage Paper No. 56. Vol. 56, article e156 (Rome: Food and Agriculture Organization of the United Nations, 1998).
Prentice, I. C., Villegas-Diaz, R. & Harrison, S. P. Accounting for atmospheric carbon dioxide variations in pollen-based reconstruction of past hydroclimates. Glob. Planet. Change 211, 103790 (2022).
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. Data Descriptor: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).
Australian Government. National Vegetation Information System Data Products (Department of Climate Change, Energy, the Environment and Water, accessed 5 December 2025); https://www.dcceew.gov.au/environment/environment-information-australia/national-vegetation-information-system/data-products
Lynch, A. H. et al. Using the paleorecord to evaluate climate and fire interactions in Australia. Annu. Rev. Plant Biol. 35, 215–239 (2007).
Falster, D. et al. AusTraits, a curated plant trait database for the Australian flora. Sci. Data 8, 254 (2021).
Sheil, D. & May, R. M. Mortality and recruitment rate evaluations in heterogeneous tropical forests. J. Ecol. 84, 91–100 (1996).
Sheil, D., Burslem, D. F. R. P. & Alder, D. The interpretation and misinterpretation of mortality rate measures. J. Ecol. 83, 331–333 (1995).
Bauman, D. et al. Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. Glob. Change Biol. 28, 1414–1432 (2022).
Prior, L. D. & Bowman, D. M. J. S. Big eucalypts grow more slowly in a warm climate: evidence of an interaction between tree size and temperature. Glob. Change Biol. 20, 2793–2799 (2014).
Prior, L. D. & Bowman, D. M. Across a macro-ecological gradient forest competition is strongest at the most productive sites. Front. Plant Sci. 5, 260 (2014).
Phillips, O. L. et al. Pattern and process in Amazon tree turnover, 1976–2001. Philos. Trans. R. Soc. B 359, 381–407 (2004).
Muller-Landau, H. C., Detto, M., Chisholm, R. A., Hubbell, S. P. & Condit, R. Detecting and projecting changes in forest biomass from plot data. For. Glob. Change 17, 381–416 (2014).
Trouvé, R. & Robinson, A. P. Estimating consignment-level infestation rates from the proportion of consignment that failed border inspection: possibilities and limitations in the presence of overdispersed data. Risk Anal. 41, 992–1003 (2021).
Bowman, D. M. J. S., Brienen, R. J. W., Gloor, E., Phillips, O. L. & Prior, L. D. Detecting trends in tree growth: not so simple. Trends Plant Sci. 18, 11–17 (2013).
Trouvé, R., Bontemps, J.-D., Collet, C., Seynave, I. & Lebourgeois, F. When do dendrometric rules fail? Insights from 20 years of experimental thinnings on sessile oak in the GIS Coop network. Ecol. Manag. 433, 276–286 (2019).
Lu, R. et al. Pervasive increase in tree mortality across the Australian continent. Figshare https://doi.org/10.6084/m9.figshare.28407893 (2025).