Pervasive increase in tree mortality across the Australian continent

14 min read Original article ↗
  • Adams, H. D. et al. Climate-induced tree mortality: Earth system consequences. Eos Trans. Am. Geophys. Union 91, 153–154 (2010).

    Article  Google Scholar 

  • McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Benito, P. et al. Climate-and successional-related changes in functional composition of European forests are strongly driven by tree mortality. Glob. Change Biol. 23, 4162–4176 (2017).

    Article  Google Scholar 

  • Needham, J. F., Chambers, J., Fisher, R., Knox, R. & Koven, C. D. Forest responses to simulated elevated CO2 under alternate hypotheses of size- and age-dependent mortality. Glob. Change Biol. 26, 5734–5753 (2020).

    Article  Google Scholar 

  • Hiltner, U., Huth, A. & Fischer, R. Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing. Biogeosciences 19, 1891–1911 (2022).

    Article  Google Scholar 

  • Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Bauman, D. et al. Tropical tree mortality has increased with rising atmospheric water stress. Nature 608, 528–533 (2022).

    Article  CAS  PubMed  Google Scholar 

  • van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the western United States. Science 323, 521–524 (2009).

    Article  PubMed  Google Scholar 

  • McDowell, N. G. et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Change 6, 295–300 (2015).

    Article  Google Scholar 

  • Senf, C. et al. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat. Commun. 9, 4978 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng, C. H. et al. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Clim. Change 1, 467–471 (2011).

    Article  Google Scholar 

  • Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond, W. M. et al. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nat. Commun. 13, 1761 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann, H. et al. Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annu. Rev. Plant Biol. 73, 673–702 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Yu, K. L. et al. Pervasive decreases in living vegetation carbon turnover time across forest climate zones. Proc. Natl Acad. Sci. USA 116, 24662–24667 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, Z. H. et al. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl Acad. Sci. USA 109, 2423–2427 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rammig, A. & Lapola, D. M. The declining tropical carbon sink. Nat. Clim. Change 11, 727–728 (2021).

    Article  Google Scholar 

  • Network, I. T. M. Towards a global understanding of tree mortality. N. Phytol. 245, 2377–2392 (2025).

    Article  Google Scholar 

  • Pugh, T. A. M. et al. Understanding the uncertainty in global forest carbon turnover. Biogeosciences 17, 3961–3989 (2020).

    Article  CAS  Google Scholar 

  • Wei, N. et al. Evolution of uncertainty in terrestrial carbon storage in Earth system models from CMIP5 to CMIP6. J. Clim. 35, 5483–5499 (2022).

    Article  Google Scholar 

  • Gallagher, R. V., Allen, S. & Wright, I. J. Safety margins and adaptive capacity of vegetation to climate change. Sci. Rep. 9, 8241 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M. & Brown, J. R. The role of climate variability in Australian drought. Nat. Clim. Change 10, 177–179 (2020).

    Article  Google Scholar 

  • Peters, J. M. R. et al. Living on the edge: A continental-scale assessment of forest vulnerability to drought. Glob. Change Biol. 27, 3620–3641 (2021).

    Article  CAS  Google Scholar 

  • Larter, M. et al. Extreme aridity pushes trees to their physical limits. Plant Physiol. 168, 804–807 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crombie, D., Tippett, J. & Hill, T. Dawn water potential and root depth of trees and understorey species in southwestern Australia. Aust. J. Bot. 36, 621–631 (1988).

    Article  Google Scholar 

  • Myers, B. A. et al. Seasonal variation in water relations of trees of differing leaf phenology in a Wet-dry tropical savanna near Darwin, Northern Australia. Aust. J. Bot. 45, 225–240 (1997).

    Article  Google Scholar 

  • Lawes, M. J. et al. Appraising widespread resprouting but variable levels of postfire seeding in Australian ecosystems: the effect of phylogeny, fire regime and productivity. Aust. J. Bot. 70, 114–130 (2022).

    Article  Google Scholar 

  • Yang, S., Ooi, M. K. J., Falster, D. S. & Cornwell, W. K. Continental-scale empirical evidence for relationships between fire response strategies and fire frequency. N. Phytol. 246, 528–542 (2025).

    Article  Google Scholar 

  • Forzieri, G., Dakos, V., McDowell, N. G., Ramdane, A. & Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 608, 534–539 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Kauwe, M. G. et al. Identifying areas at risk of drought-induced tree mortality across South-Eastern Australia. Glob. Change Biol. 26, 5716–5733 (2020).

    Article  Google Scholar 

  • The Dead Tree Detective. Western Sydney University (accessed 5 December 2025); https://biocollect.ala.org.au/acsa/project/index/77285a13-e231-49e8-b212-660c66c74bac

  • Yan, Y. et al. Climate-induced tree-mortality pulses are obscured by broad-scale and long-term greening. Nat. Ecol. Evol. 8, 912–923 (2024).

    Article  PubMed  Google Scholar 

  • Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, Y. & Chen, H. Y. H. Observations from old forests underestimate climate change effects on tree mortality. Nat. Commun. 4, 1655 (2013).

    Article  PubMed  Google Scholar 

  • Luo, Y. & Chen, H. Y. H. Climate change-associated tree mortality increases without decreasing water availability. Ecol. Lett. 18, 1207–1215 (2015).

    Article  PubMed  Google Scholar 

  • Trouvé, R., Baker, P. J., Ducey, M. J., Robinson, A. P. & Nitschke, C. R. Global warming reduces the carrying capacity of the tallest angiosperm species (Eucalyptus regnans). Nat. Commun. 16, 7440 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorpe, H. C. & Daniels, L. D. Long-term trends in tree mortality rates in the Alberta foothills are driven by stand development. Can. J. Res. 42, 1687–1696 (2012).

    Article  Google Scholar 

  • Doughty, C. E. et al. Tropical forests are approaching critical temperature thresholds. Nature 621, 105–111 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Ping, J. et al. Enhanced causal effect of ecosystem photosynthesis on respiration during heatwaves. Sci. Adv. 9, eadi6395 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hicke, J. A. & Zeppel, M. J. B. Climate-driven tree mortality: insights from the pinon pine die-off in the United States. N. Phytol. 200, 301–303 (2013).

    Article  Google Scholar 

  • Grossiord, C. et al. Plant responses to rising vapor pressure deficit. N. Phytol. 226, 1550–1566 (2020).

    Article  Google Scholar 

  • Zhou, S., Zhang, Y., Williams, A. P. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, eaau5740 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Will, R. E., Wilson, S. M., Zou, C. B. & Hennessey, T. C. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone. N. Phytol. 200, 366–374 (2013).

    Article  Google Scholar 

  • McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).

    Article  Google Scholar 

  • Carle, H. et al. Aboveground biomass in Australian tropical forests now a net carbon source. Nature 646, 611–618 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Zuleta, D. et al. Individual tree damage dominates mortality risk factors across six tropical forests. N. Phytol. 233, 705–721 (2021).

    Article  Google Scholar 

  • Murphy, H. T., Bradford, M. G., Dalongeville, A., Ford, A. J. & Metcalfe, D. J. No evidence for long-term increases in biomass and stem density in the tropical rain forests of Australia. J. Ecol. 101, 1589–1597 (2013).

    Article  Google Scholar 

  • Wright, S. J. et al. Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010).

    Article  PubMed  Google Scholar 

  • Ruger, N. et al. Beyond the fast-slow continuum: demographic dimensions structuring a tropical tree community. Ecol. Lett. 21, 1075–1084 (2018).

    Article  PubMed  Google Scholar 

  • Ruger, N. et al. Demographic trade-offs predict tropical forest dynamics. Science 368, 165–168 (2020).

    Article  PubMed  Google Scholar 

  • Callahan, R. P. et al. Forest vulnerability to drought controlled by bedrock composition. Nat. Geosci. 15, 714–719 (2022).

    Article  CAS  Google Scholar 

  • Liu, H. et al. Hydraulic traits are coordinated with maximum plant height at the global scale. Sci. Adv. 5, eaav1332 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Givnish, T. J., Wong, S. C., Stuart-Williams, H., Holloway-Phillips, M. & Farquhar, G. D. Determinants of maximum tree height in Eucalyptus species along a rainfall gradient in Victoria, Australia. Ecology 95, 2991–3007 (2014).

    Article  Google Scholar 

  • Iida, Y. et al. Linking functional traits and demographic rates in a subtropical tree community: the importance of size dependency. J. Ecol. 102, 641–650 (2014).

    Article  Google Scholar 

  • Muller-Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).

    Article  PubMed  Google Scholar 

  • Piponiot, C. et al. Distribution of biomass dynamics in relation to tree size in forests across the world. N. Phytol. 234, 1664–1677 (2022).

    Article  Google Scholar 

  • Gora, E. M. & Esquivel-Muelbert, A. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nat. Plants 7, 384–391 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Lu, R. L. et al. The U-shaped pattern of size-dependent mortality and its correlated factors in a subtropical monsoon evergreen forest. J. Ecol. 109, 2421–2433 (2021).

    Article  Google Scholar 

  • Hülsmann, L. et al. Latitudinal patterns in stabilizing density dependence of forest communities. Nature 627, 564–571 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrere, J. et al. Functional traits and climate drive interspecific differences in disturbance-induced tree mortality. Glob. Change Biol. 29, 2836–2851 (2023).

    Article  CAS  Google Scholar 

  • Coomes, D. A., Duncan, R. P., Allen, R. B. & Truscott, J. Disturbances prevent stem size-density distributions in natural forests from following scaling relationships. Ecol. Lett. 6, 980–989 (2003).

    Article  Google Scholar 

  • Coomes, D. A. & Allen, R. B. Mortality and tree-size distributions in natural mixed-age forests. J. Ecol. 95, 27–40 (2007).

    Article  Google Scholar 

  • Trouvé, R., Oborne, L. & Baker, P. J. The effect of species, size, and fire intensity on tree mortality within a catastrophic bushfire complex. Ecol. Appl. 31, e02383 (2021).

    Article  PubMed  Google Scholar 

  • Barlow, J., Peres, C. A., Lagan, B. O. & Haugaasen, T. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecol. Lett. 6, 6–8 (2003).

    Article  Google Scholar 

  • Bendall, E. R. et al. Demographic change and loss of big trees in resprouting eucalypt forests exposed to megadisturbance. Glob. Ecol. Biogeogr. 33, e13842 (2024).

    Article  Google Scholar 

  • Murphy, B. P. et al. Using a demographic model to project the long-term effects of fire management on tree biomass in Australian savannas. Ecol. Monogr. 93, e1564 (2023).

    Article  CAS  Google Scholar 

  • Prior, L. D., Murphy, B. P. & Russell-Smith, J. Environmental and demographic correlates of tree recruitment and mortality in north Australian savannas. Ecol. Manag. 257, 66–74 (2009).

    Article  Google Scholar 

  • Bialic-Murphy, L. et al. The pace of life for forest trees. Science 386, 92–98 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Johnson, D. J. et al. Climate sensitive size-dependent survival in tropical trees. Nat. Ecol. Evol. 2, 1436–1442 (2018).

    Article  PubMed  Google Scholar 

  • Oliver, C. D. & Larson, B. A. 'Forest Stand Dynamics, Update Edition'. in Yale School of the Environment Other Publications 1 (1996); https://elischolar.library.yale.edu/fes_pubs/1

  • Wang, J., Taylor, A. R. & D’Orangeville, L. Warming-induced tree growth may help offset increasing disturbance across the Canadian boreal forest. Proc. Natl Acad. Sci. USA 120, e2212780120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trouvé, R., Bontemps, J.-D., Collet, C., Seynave, I. & Lebourgeois, F. Growth partitioning in forest stands is affected by stand density and summer drought in sessile oak and Douglas-fir. Ecol. Manag. 334, 358–368 (2014).

    Article  Google Scholar 

  • Chen, L. et al. Global increase in the occurrence and impact of multiyear droughts. Science 387, 278–284 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Yuan, X. et al. A global transition to flash droughts under climate change. Science 380, 187–191 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Yu, K. L. et al. Field-based tree mortality constraint reduces estimates of model-projected forest carbon sinks. Nat. Commun. 13, 2094 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugmann, H. et al. Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale. Ecosphere 10, e02616 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Moorcroft, P. R., Hurtt, G. C. & Pacala, S. W. A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecol. Monogr. 71, 557–585 (2001).

    Article  Google Scholar 

  • Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. N. Phytol. 198, 957–969 (2013).

    Article  Google Scholar 

  • Forrester, D. I., England, J. R., Paul, K. I. & Roxburgh, S. H. Sensitivity analysis of the FullCAM model: Context dependency and implications for model development to predict Australia’s forest carbon stocks. Ecol. Model. 489, 110631 (2024).

    Article  CAS  Google Scholar 

  • Case studies forestry and urban tree management projects. dimap (accessed 5 December 2025); https://dimap.asia/forestry-tasmania-usage-of-full-waveform-lidar-in-forestry-taxation/

  • Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).

    Article  Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. FAO Irrigation and Drainage Paper No. 56. Vol. 56, article e156 (Rome: Food and Agriculture Organization of the United Nations, 1998).

  • Prentice, I. C., Villegas-Diaz, R. & Harrison, S. P. Accounting for atmospheric carbon dioxide variations in pollen-based reconstruction of past hydroclimates. Glob. Planet. Change 211, 103790 (2022).

    Article  Google Scholar 

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. Data Descriptor: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Australian Government. National Vegetation Information System Data Products (Department of Climate Change, Energy, the Environment and Water, accessed 5 December 2025); https://www.dcceew.gov.au/environment/environment-information-australia/national-vegetation-information-system/data-products

  • Lynch, A. H. et al. Using the paleorecord to evaluate climate and fire interactions in Australia. Annu. Rev. Plant Biol. 35, 215–239 (2007).

    CAS  Google Scholar 

  • Falster, D. et al. AusTraits, a curated plant trait database for the Australian flora. Sci. Data 8, 254 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheil, D. & May, R. M. Mortality and recruitment rate evaluations in heterogeneous tropical forests. J. Ecol. 84, 91–100 (1996).

    Article  Google Scholar 

  • Sheil, D., Burslem, D. F. R. P. & Alder, D. The interpretation and misinterpretation of mortality rate measures. J. Ecol. 83, 331–333 (1995).

    Article  Google Scholar 

  • Bauman, D. et al. Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. Glob. Change Biol. 28, 1414–1432 (2022).

    Article  CAS  Google Scholar 

  • Prior, L. D. & Bowman, D. M. J. S. Big eucalypts grow more slowly in a warm climate: evidence of an interaction between tree size and temperature. Glob. Change Biol. 20, 2793–2799 (2014).

    Article  Google Scholar 

  • Prior, L. D. & Bowman, D. M. Across a macro-ecological gradient forest competition is strongest at the most productive sites. Front. Plant Sci. 5, 260 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips, O. L. et al. Pattern and process in Amazon tree turnover, 1976–2001. Philos. Trans. R. Soc. B 359, 381–407 (2004).

    Article  CAS  Google Scholar 

  • Muller-Landau, H. C., Detto, M., Chisholm, R. A., Hubbell, S. P. & Condit, R. Detecting and projecting changes in forest biomass from plot data. For. Glob. Change 17, 381–416 (2014).

    Google Scholar 

  • Trouvé, R. & Robinson, A. P. Estimating consignment-level infestation rates from the proportion of consignment that failed border inspection: possibilities and limitations in the presence of overdispersed data. Risk Anal. 41, 992–1003 (2021).

    Article  PubMed  Google Scholar 

  • Bowman, D. M. J. S., Brienen, R. J. W., Gloor, E., Phillips, O. L. & Prior, L. D. Detecting trends in tree growth: not so simple. Trends Plant Sci. 18, 11–17 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Trouvé, R., Bontemps, J.-D., Collet, C., Seynave, I. & Lebourgeois, F. When do dendrometric rules fail? Insights from 20 years of experimental thinnings on sessile oak in the GIS Coop network. Ecol. Manag. 433, 276–286 (2019).

    Article  Google Scholar 

  • Lu, R. et al. Pervasive increase in tree mortality across the Australian continent. Figshare https://doi.org/10.6084/m9.figshare.28407893 (2025).