Cryo-electron microscopy reveals sequential binding and activation of Ryanodine Receptors by statin triplets

8 min read Original article ↗

References

  1. Pinal-Fernandez, I., Casal-Dominguez, M. & Mammen, A. L. Statins: pros and cons. Med Clin. (Barc.) 150, 398–402 (2018).

    Google Scholar 

  2. Yang, C., Wu, Y. J., Qian, J. & Li, J. J. Landscape of statin as a cornerstone in atherosclerotic cardiovascular disease. Rev. Cardiovasc Med 24, 373 (2023).

    Google Scholar 

  3. Adhyaru, B. B. & Jacobson, T. A. Safety and efficacy of statin therapy. Nat. Rev. Cardiol. 15, 757–769 (2018).

    Google Scholar 

  4. Furberg, C. D. & Pitt, B. Withdrawal of cerivastatin from the world market. Curr. Control. Trials Cardiovasc. Med 2, 205–207 (2001).

    Google Scholar 

  5. Abd, T. T. & Jacobson, T. A. Statin-induced myopathy: a review and update. Expert Opin. Drug Saf. 10, 373–387 (2011).

    Google Scholar 

  6. Bruckert, E., Hayem, G., Dejager, S., Yau, C. & Begaud, B. Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients—the PRIMO study. Cardiovasc. Drugs Ther. 19, 403–414 (2005).

    Google Scholar 

  7. Cohen, J. D., Brinton, E. A., Ito, M. K. & Jacobson, T. A. Understanding Statin Use in America and Gaps in Patient Education (USAGE): an internet-based survey of 10,138 current and former statin users. J. Clin. Lipido. 6, 208–215 (2012).

    Google Scholar 

  8. Woll, K. A. & Van Petegem, F. Calcium-release channels: structure and function of IP(3) receptors and ryanodine receptors. Physiol. Rev. 102, 209–268 (2022).

    Google Scholar 

  9. Pancaroglu, R. & Van Petegem, F. Calcium channelopathies: structural insights into disorders of the muscle excitation-contraction complex. Annu Rev. Genet. 52, 373–396 (2018).

    Google Scholar 

  10. Fujii, J. et al. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253, 448–451 (1991).

    Google Scholar 

  11. Horstick, E. J. et al. Stac3 is a component of the excitation-contraction coupling machinery and is mutated in Native American myopathy. Nat. Commun. 4, 1952 (2013).

    Google Scholar 

  12. Rufenach, B. et al. Multiple sequence variants in STAC3 affect interactions with CaV1.1 and excitation-contraction coupling. Structure 28, 922–932.e5 (2020).

    Google Scholar 

  13. Rufenach, B. & Van Petegem, F. Structure and function of STAC proteins: calcium channel modulators and critical components of muscle excitation-contraction coupling. J. Biol. Chem. 297, 100874 (2021).

    Google Scholar 

  14. Zhang, Y. et al. A mutation in the human ryanodine receptor gene associated with central core disease. Nat. Genet. 5, 46–50 (1993).

    Google Scholar 

  15. Guis, S. et al. Rhabdomyolysis and myalgia associated with anticholesterolemic treatment as potential signs of malignant hyperthermia susceptibility. Arthritis Rheum. 49, 237–238 (2003).

    Google Scholar 

  16. Krivosic-Horber, R., Depret, T., Wagner, J. M. & Maurage, C. A. Malignant hyperthermia susceptibility revealed by increased serum creatine kinase concentrations during statin treatment. Eur. J. Anaesthesiol. 21, 572–574 (2004).

    Google Scholar 

  17. Guis, S. et al. In vivo and in vitro characterization of skeletal muscle metabolism in patients with statin-induced adverse effects. Arthritis Rheum. 55, 551–557 (2006).

    Google Scholar 

  18. Vladutiu, G. D. et al. Genetic risk for malignant hyperthermia in non-anesthesia-induced myopathies. Mol. Genet Metab. 104, 167–173 (2011).

    Google Scholar 

  19. Isackson, P. J. et al. RYR1 and CACNA1S genetic variants identified with statin-associated muscle symptoms. Pharmacogenomics 19, 1235–1249 (2018).

    Google Scholar 

  20. Lotteau, S. et al. A mechanism for statin-induced susceptibility to myopathy. JACC Basic Transl. Sci. 4, 509–523 (2019).

    Google Scholar 

  21. Inoue, R. et al. Ca2+-releasing effect of cerivastatin on the sarcoplasmic reticulum of mouse and rat skeletal muscle fibers. J. Pharm. Sci. 93, 279–288 (2003).

    Google Scholar 

  22. Knoblauch, M., Dagnino-Acosta, A. & Hamilton, S. L. Mice with RyR1 mutation (Y524S) undergo hypermetabolic response to simvastatin. Skelet. Muscle 3, 22 (2013).

    Google Scholar 

  23. Gonzalez, A., Iles, T. L., Iaizzo, P. A. & Bandschapp, O. Impact of statin intake on malignant hyperthermia: an in vitro and in vivo swine study. BMC Anesthesiol. 20, 270 (2020).

    Google Scholar 

  24. Metterlein, T. et al. Statins alter intracellular calcium homeostasis in malignant hyperthermia susceptible individuals. Cardiovasc Ther. 28, 356–360 (2010).

    Google Scholar 

  25. Venturi, E. et al. Simvastatin activates single skeletal RyR1 channels but exerts more complex regulation of the cardiac RyR2 isoform. Br. J. Pharm. 175, 938–952 (2018).

    Google Scholar 

  26. Lindsay, C., Musgaard, M., Russell, A. J. & Sitsapesan, R. Statin activation of skeletal ryanodine receptors (RyR1) is a class effect but separable from HMG-CoA reductase inhibition. Br. J. Pharm. 179, 4941–4957 (2022).

    Google Scholar 

  27. des Georges, A. et al. Structural basis for gating and activation of RyR1. Cell 167, 145–157 e17 (2016).

    Google Scholar 

  28. Ma, R. et al. Structural basis for diamide modulation of ryanodine receptor. Nat. Chem. Biol. 16, 1246–1254 (2020).

    Google Scholar 

  29. Lin, L. et al. Cryo-EM structures of ryanodine receptors and diamide insecticides reveal the mechanisms of selectivity and resistance. Nat. Commun. 15, 9056 (2024).

    Google Scholar 

  30. Roston, T. M. et al. The clinical and genetic spectrum of catecholaminergic polymorphic ventricular tachycardia: findings from an international multicentre registry. Europace 20, 541–547 (2018).

    Google Scholar 

  31. Cholak, S. et al. Allosteric modulation of ryanodine receptor RyR1 by nucleotide derivatives. Structure 31, 790–800.e4 (2023).

    Google Scholar 

  32. Chen, Y. S. et al. Cryo-EM investigation of ryanodine receptor type 3. Nat. Commun. 15, 8630 (2024).

    Google Scholar 

  33. Chi, X. et al. Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators. Proc. Natl Acad. Sci. USA 116, 25575–25582 (2019).

    Google Scholar 

  34. Istvan, E. S. & Deisenhofer, J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292, 1160–1164 (2001).

    Google Scholar 

  35. Riazi, S., Kraeva, N. & Hopkins, P. M. Malignant hyperthermia in the post-genomics era: new perspectives on an old concept. Anesthesiology 128, 168–180 (2018).

    Google Scholar 

  36. Gillard, E. F. et al. A substitution of cysteine for arginine 614 in the ryanodine receptor is potentially causative of human malignant hyperthermia. Genomics 11, 751–755 (1991).

    Google Scholar 

  37. MacLennan, D. H. & Phillips, M. S. Malignant hyperthermia. Science 256, 789–794 (1992).

    Google Scholar 

  38. Woll, K. A., Haji-Ghassemi, O. & Van Petegem, F. Pathological conformations of disease mutant Ryanodine Receptors revealed by cryo-EM. Nat. Commun. 12, 807 (2021).

    Google Scholar 

  39. Stern, R. H. et al. Pharmacodynamics and pharmacokinetic-pharmacodynamic relationships of atorvastatin, an HMG-CoA reductase inhibitor. J. Clin. Pharm. 40, 616–623 (2000).

    Google Scholar 

  40. Truong, K. M. & Pessah, I. N. Comparison of chlorantraniliprole and flubendiamide activity toward wild-type and malignant hyperthermia-susceptible ryanodine receptors and heat stress intolerance. Toxicol. Sci. 167, 509–523 (2019).

    Google Scholar 

  41. Haji-Ghassemi, O. et al. Cryo-EM analysis of scorpion toxin binding to Ryanodine Receptors reveals subconductance that is abolished by PKA phosphorylation. Sci. Adv. 9, eadf4936 (2023).

    Google Scholar 

  42. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Google Scholar 

  43. Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    Google Scholar 

  44. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput Chem. 25, 1605–1612 (2004).

    Google Scholar 

  45. He, J., Li, T. & Huang, S.-Y. Improvement of cryo-EM maps by simultaneous local and non-local deep learning. Nat. Commun. 14, 3217 (2023).

    Google Scholar 

  46. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D., Biol. Crystallogr. 66, 486–501 (2010).

    Google Scholar 

  47. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D. Struct. Biol. 74, 531–544 (2018).

    Google Scholar 

  48. Melville, Z. et al. A drug and ATP binding site in the type 1 ryanodine receptor. Structure 30, 1025–1034.e4 (2022).

    Google Scholar 

  49. Croll, T.I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519–530 (2018).

    Google Scholar 

  50. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).

    Google Scholar 

  51. Yuchi, Z., Lau, K. & Van Petegem, F. Disease mutations in the ryanodine receptor central region: crystal structures of a phosphorylation hot spot domain. Structure 20, 1201–1211 (2012).

    Google Scholar 

  52. Yuchi, Z. et al. Crystal structures of ryanodine receptor SPRY1 and tandem-repeat domains reveal a critical FKBP12 binding determinant. Nat. Commun. 6, 7947 (2015).

    Google Scholar 

  53. Muenks, A., Zepeda, S., Zhou, G., Veesler, D. & DiMaio, F. J. N. C. Automatic and accurate ligand structure determination guided by cryo-electron microscopy maps. Nat. Commun. 14, 1164 (2023).

    Google Scholar 

  54. Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model 51, 2778–2786 (2011).

    Google Scholar 

  55. Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Google Scholar 

  56. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. & Sansom, M. S. J.J.o.m.g. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996).

    Google Scholar 

Download references