A long-range polarization-controlled optical tractor beam

4 min read Original article ↗

References

  1. Lee, S-H., Roichman, Y. & Grier, D. Optical solenoid beams. Opt. Express 18, 6988–6993 (2010).

    Article  ADS  Google Scholar 

  2. Ruffner, D. B. & Grier, D. G. Optical conveyors: a class of active tractor beams. Phys. Rev. Lett. 109, 163903 (2012).

    Article  ADS  Google Scholar 

  3. Brzobohatý, O. et al. Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’. Nature Photon. 7, 123–127 (2013).

    Article  ADS  Google Scholar 

  4. Kajorndejnukul, V., Ding, W., Sukhov, S. & Dogariu, A. Linear momentum increase and negative optical forces at dielectric interface. Nature Photon. 7, 787–790 (2013).

    Article  ADS  Google Scholar 

  5. Marston, P. L. Axial radiation force of a Bessel beam on a sphere and direction reversal of the force. J. Acoust. Soc. Am. 120, 3518–3524 (2006).

    Article  ADS  Google Scholar 

  6. Sukhov, S. & Dogariu, A. Negative nonconservative forces: optical ‘tractor beams’ for arbitrary objects. Phys. Rev. Lett. 107, 203602 (2011).

    Article  ADS  Google Scholar 

  7. Saenz, J. Laser tractor beams. Nature Photon. 5, 514–515 (2011).

    Article  ADS  Google Scholar 

  8. Chen, J., Ng, J., Lin, Z. & Chan, C. T. Optical pulling force. Nature Photon. 5, 531–534 (2011).

    Article  ADS  Google Scholar 

  9. Dogariu, A., Sukhov, S. & Sáenz, J. J. Optically induced ‘negative forces’. Nature Photon. 7, 24–27 (2013).

    Article  ADS  Google Scholar 

  10. Gahagan, K. T. & Swartzlander Jr., G. A. Optical vortex trapping of particles. Opt. Lett. 21, 827–829 (1996).

    Article  ADS  Google Scholar 

  11. Bowman, R. W. & Padgett, M. J. Optical trapping and binding. Rep. Prog. Phys. 76, 1–28 (2013).

    Article  Google Scholar 

  12. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  ADS  Google Scholar 

  13. Ashkin, A. & Dziedzic, J. M. Optical levitation in high vacuum. Appl. Phys. Lett. 28, 333–335 (1976).

    Article  ADS  Google Scholar 

  14. Peterman, E. J. G., Gittes, F. & Schmidt, C. F. Laser-induced heating in optical traps. Biophys. J. 84, 1308–1316 (2003).

    Article  ADS  Google Scholar 

  15. Preining, O. in Aerosol Science (ed. Davies, C. N.) Ch. V, 111–135 (Academic, 1966).

    Google Scholar 

  16. Phuoc, T. X. A comparative study of the photon pressure force, the photophoretic force, and the adhesion von der Waals force. Opt. Commun. 245, 27–35 (2005).

    Article  ADS  Google Scholar 

  17. Rohatschek, H. Semi-empirical model of photophoretic forces for the entire range of pressures. J. Aerosol Sci. 26, 717–734 (1995).

    Article  ADS  Google Scholar 

  18. Wurm, G. & Krauss, O. Dust eruptions by photophoresis and solid state greenhouse effects. Phys. Rev. Lett. 96, 134301 (2006).

    Article  ADS  Google Scholar 

  19. Yalamov, Yu. I., Kutukov, V. B. & Shchukin, E. R. Theory of the photophoretic motion of the large-size volatile aerosol particle. J. Colloid Interface Sci. 57, 564–571 (1976).

    Article  ADS  Google Scholar 

  20. Hidy, G. M. & Brock, J. R. Photophoresis and the descent of particles into the lower stratosphere. J. Geophys. Res. 72, 455–460 (1967).

    Article  ADS  Google Scholar 

  21. Shvedov, V. G. et al. Giant optical manipulation. Phys. Rev. Lett. 105, 118103 (2010).

    Article  ADS  Google Scholar 

  22. Mackowski, D. W. Photophoresis of aerosol particles in the free molecular and slip-flow regimes. Int. J. Heat Mass Transfer 32, 843–854 (1989).

    Article  Google Scholar 

  23. Zulehner, W. & Rohatschek, H. Representation and calculation of photophoretic forces and torques. J. Aerosol Sci. 26, 201–210 (1995).

    Article  ADS  Google Scholar 

  24. Yalamov, Yu. I. & Khasanov, A. S. Photophoresis of coarse aerosol particles with nonuniform thermal conductivity. Tech. Phys. 43, 347–352 (1998).

    Article  Google Scholar 

  25. Dusel, P. W., Kerker, M. & Cooke, D. D. Distribution of absorption centers within irradiated spheres. J. Opt. Soc. Am. 69, 55–59 (1979).

    Article  ADS  Google Scholar 

  26. Esseling, M., Rose, P., Alpmann, C. & Denz, C. Photophoretic trampoline—interaction of single airborne absorbing droplets with light. Appl. Phys. Lett. 101, 131115 (2012).

    Article  ADS  Google Scholar 

  27. Shvedov, V. G., Hnatovsky, C., Rode, A. V. & Krolikowski, W. Robust trapping and manipulation of airborne particles with a bottle beam. Opt. Express 19, 17350–17356 (2011).

    Article  ADS  Google Scholar 

  28. Shvedov, V. G., Hnatovsky, C., Eckerskorn, N., Rode, A. V. & Krolikowski, W. Polarization-sensitive photophoresis. Appl. Phys. Lett. 101, 051106 (2012).

    Article  ADS  Google Scholar 

  29. Soong, C. Y., Li, W. K., Liu, C. H. & Tzeng, P. Y. Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids. Opt. Express 18, 2168–2182 (2010).

    Article  ADS  Google Scholar 

  30. Rakic, A. D., Djurisic, A. B., Elazar, J. M. & Majewski, M. L. Optical properties of metallic films for vertical-cavity optoelectronics devices. Appl. Opt. 37, 5271–5283 (1998).

    Article  ADS  Google Scholar 

Download references