How AI could lead to a better understanding of the brain

4 min read Original article ↗
  • COMMENT

Early machine-learning systems were inspired by neural networks — now AI might allow neuroscientists to get to grips with the brain’s unique complexities.

By

  1. Viren Jain
    1. Viren Jain is a senior staff research scientist at Google Research, 1600 Amphitheatre Parkway, Mountain View, California, and leads the Connectomics at Google team.

A multi-coloured visualisation of all incoming connections onto a single human pyramidal neuron in cerebral cortex

A reconstruction of incoming connections to a single human neuron, called a pyramidal cell. Credit: A. Shapson-Coe, M. Januszewski, D. Berger, A. Pope, V. Jain & J. Lichtman

Can a computer be programmed to simulate a brain? It’s a question mathematicians, theoreticians and experimentalists have long been asking — whether spurred by a desire to create artificial intelligence (AI) or by the idea that a complex system such as the brain can be understood only when mathematics or a computer can reproduce its behaviour. To try to answer it, investigators have been developing simplified models of brain neural networks since the 1940s1. In fact, today’s explosion in machine learning can be traced back to early work inspired by biological systems.

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$32.99 / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Nature 623, 247-250 (2023)

doi: https://doi.org/10.1038/d41586-023-03426-3

References

  1. McCulloch, W. S. & Pitts, W. Bull. Math. Biophys. 5, 115–133 (1943).

    Article  Google Scholar 

  2. Jefferis, G., Collinson, L., Bosch, C., Costa, M. & Schlegel, P. Scaling up Connectomics (Wellcome, 2023).

    Google Scholar 

  3. Cook, S. J. et al. Nature 571, 63–71 (2019).

    Article  PubMed  Google Scholar 

  4. Winding, M. et al. Science 379, eadd9330 (2023).

    Article  PubMed  Google Scholar 

  5. Dorkenwald, S. et al. Preprint at bioRxiv https://doi.org/10.1101/2023.06.27.546656 (2023).

  6. De Ceglia, R. et al. Nature 622, 120–129 (2023).

    Article  PubMed  Google Scholar 

  7. Schretter, C. E. et al. eLife 9, e58942 (2020).

    Article  PubMed  Google Scholar 

  8. Wilson, R. I. Annu. Rev. Neurosci. 46, 403–423 (2023).

    Article  PubMed  Google Scholar 

  9. Wanner, A. A. & Friedrich, R. W. Nature Neurosci. 23, 433–442 (2020).

    Article  PubMed  Google Scholar 

  10. Vishwanathan, A. et al. Preprint at bioRxiv https://doi.org/10.1101/2020.10.28.359620 (2020).

  11. Petrucco, L. et al. Nature Neurosci. 26, 765–773 (2023).

    Article  PubMed  Google Scholar 

  12. Chen, X. et al. Neuron 100, 876–890 (2018).

    Article  PubMed  Google Scholar 

  13. Takemura, S.-Y. et al. Nature 500, 175–181 (2013).

    Article  PubMed  Google Scholar 

  14. Kilman, V. L. & Marder, E. J. Comp. Neurol. 374, 362–375 (1996).

    Article  PubMed  Google Scholar 

  15. Bargmann, C. I. & Marder, E. Nature Methods 10, 483–490 (2013).

    Article  PubMed  Google Scholar 

  16. Lam, R. et al. Preprint at https://arxiv.org/abs/2212.12794 (2023).

  17. Espeholt, L. et al. Nature Commun. 13, 5145 (2022).

    Article  PubMed  Google Scholar 

  18. Witvliet, D. et al. Nature 596, 257–261 (2021).

    Article  PubMed  Google Scholar 

  19. Haspel, G. et al. Preprint at https://arxiv.org/abs/2308.06578 (2023).

  20. Frégnac, Y. & Laurent, G. Nature 513, 27–29 (2014).

    Article  PubMed  Google Scholar 

Download references

Competing Interests

The author declares no competing interests.

Subjects

Latest on: