Ageing-related receptors resolved

3 min read Original article ↗
  • NEWS AND VIEWS

Ageing is a regulated process in which hormones have pivotal roles. Crystal structures of two hormone co-receptors should be informative for drug discovery focused on age-related disorders.

By

  1. Makoto Kuro-o
    1. Makoto Kuro-o is in the Division of Anti-Ageing Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan.

In Greek mythology, three goddesses known as the Fates govern the lifespan of each person. Klotho, Lachesis and Atropos are the spinner, the allotter and the cutter of the thread of life, respectively. So when a genetic mutation was identified in mice that undergo premature ageing1, the gene involved was fittingly named klotho. The protein it encodes, α-klotho, and a sister protein called β-klotho, are high-affinity co-receptors for certain members of the fibroblast growth factor (FGF) family of signalling proteins2, but their means of action has not been well characterized. Two papers3,4 online in Nature describe crystal structures of FGF–klotho complexes, not only providing a basis for understanding how klothos act, but also opening up avenues for structure-based drug design.

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$32.99 / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Nature 553, 409-410 (2018)

doi: https://doi.org/10.1038/d41586-017-09032-4

References

  1. Kuro-o, M. et al. Nature 390, 45–51 (1997).

    Article  PubMed  CAS  Google Scholar 

  2. Kurosu, H. et al. J. Biol. Chem. 281, 6120–6123 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. Chen, G. et al. Nature 553, 461–466 (2018).

    Article  Google Scholar 

  4. Lee, S. et al. Nature 553, 501–505 (2018).

    Article  Google Scholar 

  5. Hu, M. C., Shiizake, K., Kuro-o, M. & Moe, O. W. Annu. Rev. Physiol. 75, 503–533 (2013).

    Article  PubMed  CAS  Google Scholar 

  6. Shimada, T. et al. J. Clin. Invest. 113, 561–568 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. Ogawa, Y. et al. Proc. Natl Acad. Sci. USA 104, 7432–7437 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. Kurosu, H. et al. J. Biol. Chem. 282, 26687–26695 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. Wright, P. E. & Dyson, H. J. J. Mol. Biol. 293, 321–331 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. Kuro-o, M. Nature Rev. Nephrol. 9, 650–660 (2013).

    Article  PubMed  CAS  Google Scholar 

  11. Zhang, Y. et al. eLife 1, e00065 (2012).

    Article  PubMed  CAS  Google Scholar 

Download references

Subjects

Latest on: