Copy Paste MathJax

4 min read Original article ↗

Proper superset

\supset

\supset

Superset

\supseteq

\supseteq

Proper subset

\subset

\subset

Subset

\subseteq

\subseteq

Empty set

\emptyset

\emptyset

Set intersection

\cap

\cap

Set-builder notation

{xxZ0x10}\{ x|x \in \mathbb{Z} \land 0 \leq x \leq 10 \}

\{ x|x \in \mathbb{Z} \land 0 \leq x \leq 10 \}

Natural numbers

N\mathbb{N}

\mathbb{N}

Real numbers

R\mathbb{R}

\mathbb{R}

Integers

Z\mathbb{Z}

\mathbb{Z}

Rational numbers

Z\mathbb{Z}

\mathbb{Z}

Complex numbers

C\mathbb{C}

\mathbb{C}

Imaginary numbers

I\mathbb{I}

\mathbb{I}

Left arrow

,,,\leftarrow, \longleftarrow, \Leftarrow, \Longleftarrow

\leftarrow, \longleftarrow, \Leftarrow, \Longleftarrow

Right arrow

,,,\rightarrow, \longrightarrow, \Rightarrow, \Longrightarrow

\rightarrow, \longrightarrow, \Rightarrow, \Longrightarrow

Up arrow

,\uparrow, \Uparrow

\uparrow, \Uparrow

Down arrow

,\downarrow, \Downarrow

\downarrow, \Downarrow

Left and right arrow

,,,\leftrightarrow, \longleftrightarrow, \Leftrightarrow, \Longleftrightarrow

\leftrightarrow, \longleftrightarrow, \Leftrightarrow, \Longleftrightarrow

Up and down arrow

,\updownarrow, \Updownarrow

\updownarrow, \Updownarrow

Maplet arrow / maps to

,\mapsto, \longmapsto

\mapsto, \longmapsto

Hook arrow

,\hookleftarrow, \hookrightarrow

\hookleftarrow, \hookrightarrow

Harpoon arrows

,,,\leftharpoonup, \rightharpoonup, \leftharpoondown, \rightharpoondown

\leftharpoonup, \rightharpoonup, \leftharpoondown, \rightharpoondown

Ordinal or Intercardinal direction arrows

,,,\nearrow, \searrow, \swarrow, \nwarrow

\nearrow, \searrow, \swarrow, \nwarrow

Pythagoras Theorem

a2+b2=c2a^2 + b^2 = c^2

a^2 + b^2 = c^2

Theory of Relativity

E=mc2E = mc^2

E = mc^2

Euler's Identity

eiπ+1=0e^{i\pi} + 1 = 0

e^{i\pi} + 1 = 0

Euler's polyhedron formula

FE+V=2F - E + V = 2

F - E + V = 2

Newton's law of gravity

F=Gm1m2d2F = G\frac{m_1 m_2}{d^2}

F = G\frac{m_1 m_2}{d^2}

Origin of complex numbers

i2=1i^2 = -1

i^2 = -1

de Morgan's Laws

(EF)=EF(EF)=EF\begin{align} \left ( E \cup F \right )' = E' \cap F' \\ \left ( E \cap F \right )' = E' \cup F' \end{align}

\begin{align} \left ( E \cup F \right )' = E' \cap F' \\ \left ( E \cap F \right )' = E' \cup F' \end{align}

Repeating decimals

0.3240.\overline{324}

0.\overline{324}

Fraction

xy\frac{x}{y}

\frac{x}{y}

Exponent

a2,xya^2, x^y

a^2, x^y

Radical

9,xn\sqrt{9}, \sqrt[n]{x}

\sqrt{9}, \sqrt[n]{x}

Square Root

25\sqrt{25}

\sqrt{25}

Logarithm

logx,log2x\log x, \log_{2}x

\log x, \log_{2}x

Absolute Value

x\vert{x} \vert

\vert{x} \vert

Calligraphic font

R,Z,D\mathcal{R}, \mathcal{Z}, \mathcal{D}

\mathcal{R}, \mathcal{Z}, \mathcal{D}

Bars over symbols

aˉ,bˉ,cˉ\bar{a}, \bar{b}, \bar{c}

\bar{a}, \bar{b}, \bar{c}

Hats over symbols

a~,b~,c~\tilde{a}, \tilde{b}, \tilde{c}

\tilde{a}, \tilde{b}, \tilde{c}

Arrows over symbols

a,b,c\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}

\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}

Dots over symbols

a˙,b˙,c˙\dot{a}, \dot{b}, \dot{c}

\dot{a}, \dot{b}, \dot{c}

Spacing between symbols

a  b  ca\;b\;c

a\;b\;c

Nabla (gradient)

f(x0,y0)\nabla f(x_0, y_0)

\nabla f(x_0, y_0)

Text

Something\text{Something}

\text{Something}

Sums with limits

i=1ni2\sum\limits_{i=1}^{n}i^2

\sum\limits_{i=1}^{n}i^2

Products with limits

i=1ni2\prod\limits_{i=1}^{n}i^2

\prod\limits_{i=1}^{n}i^2

Integrals with limits

f(x)dx\int\limits_{-\infty}^{\infty}f(x)\,\mathrm{d}x

\int\limits_{-\infty}^{\infty}f(x)\,\mathrm{d}x

Partial Derivative

Qt,2Lxy\frac{\partial Q}{\partial t}, \frac{\partial^2L}{\partial x \partial y}

\frac{\partial Q}{\partial t}, \frac{\partial^2L}{\partial x \partial y}

Limits

limx0(1+x)1x=e\lim_{x\to 0} (1+x)^\frac{1}{x} = e

\lim_{x\to 0} (1+x)^\frac{1}{x} = e

Max

max(1,2,3)\max(1,2,3)

\max(1,2,3)

Min

min(3,4,5)\min(3,4,5)

\min(3,4,5)

vmatrix

abcd\begin{vmatrix} a & b \\ c & d \end{vmatrix}

\begin{vmatrix} a & b \\ c & d \end{vmatrix}

pmatrix

(abcd)\begin{pmatrix} a & b \\ c & d \end{pmatrix}

\begin{pmatrix} a & b \\ c & d \end{pmatrix}

bmatrix

[abcd]\begin{bmatrix} a & b \\ c & d \end{bmatrix}

\begin{bmatrix} a & b \\ c & d \end{bmatrix}

Bmatrix

{abcd}\begin{Bmatrix} a & b \\ c & d \end{Bmatrix}

\begin{Bmatrix} a & b \\ c & d \end{Bmatrix}

Vmatrix

abcd\begin{Vmatrix} a & b \\ c & d \end{Vmatrix}

\begin{Vmatrix} a & b \\ c & d \end{Vmatrix}

Partial

\partial

\partial

double dagger

\ddag

\ddag

copyright

©\copyright

\copyright

center dots

1,1, \cdots

1, \cdots

diagonal dots

\ddots

\ddots

lower dots

1,1, \ldots

1, \ldots

vertical dots

\vdots

\vdots

Measured angle

\measuredangle

\measuredangle

Spherical angle

\sphericalangle

\sphericalangle

epsilon and varepsilon

ϵ,ε\epsilon, \varepsilon

\epsilon, \varepsilon

theta and vartheta

θ,ϑ\theta, \vartheta

\theta, \vartheta

kappa and varkappa

κ,ϰ\kappa, \varkappa

\kappa, \varkappa

pi and varpi

π,ϖ\pi, \varpi

\pi, \varpi

rho and varrho

ρ,ϱ\rho, \varrho

\rho, \varrho

sigma and varsigmna

σ,ς\sigma, \varsigma

\sigma, \varsigma

upsilon

υ\upsilon

\upsilon

phi and varphi

ϕ,φ\phi, \varphi

\phi, \varphi

Big O

O,O\mathcal{O}, O

\mathcal{O}, O

Small Omega

ω\omega

\omega

On the order of

\sim

\sim

Constant Time

O(1)O(1)

O(1)

Logarithmic Time

O(logn)O(\log{}n)

O(\log{}n)

Quasilinear Time

O(nlogn)O(n\log{}n)

O(n\log{}n)

Quadratic Time

O(n2)O(n^2)

O(n^2)

Cubic Time

O(n3)O(n^3)

O(n^3)

Factorial Time

O(n!)O(n!)

O(n!)

Approximately equal

\approx

\approx

Less than or equal

\leq

\leq

Greater than or equal

\geq

\geq

Much greater than

\gg

\gg

sin

sinθ\sin \theta

\sin \theta

cos

cosθ\cos \theta

\cos \theta

tan

tanθ\tan \theta

\tan \theta

cot

cotθ\cot \theta

\cot \theta

sec

secθ\sec \theta

\sec \theta

csc

cscθ\csc \theta

\csc \theta

arcsin

arcsinθ\arcsin \theta

\arcsin \theta

arccos

arccosθ\arccos \theta

\arccos \theta

arctan

arctanθ\arctan \theta

\arctan \theta