Nonmonotonic Logic

17 min read Original article ↗

References

Antonelli, G. A. (1999). A directly cautious theory of defeasible consequence for default logic via the notion of general extension. Artificial Intelligence, 109(1), 71109.CrossRefGoogle Scholar

Antoniou, G., & Wang, K. (2007). Default logic. In Gabbay, D. & Woods, J. (Eds.), Handbook of the history of logic (pp. 517556, Vol. 8). North-Holland.Google Scholar

Arieli, O., & Avron, A. (2000). General patterns for nonmonotonic reasoning: From basic entailments to plausible relations. Logic Journal of the IGPL, 8, 119148.CrossRefGoogle Scholar

Arieli, O., Borg, A., & Heyninck, J. (2019). A review of the relations between logical argumentation and reasoning with maximal consistency. Annals of Mathematics and Artificial Intelligence, 87(3), 187226.CrossRefGoogle Scholar

Arieli, O., Borg, A., Heyninck, J., & Straßer, C. (2021a). Logic-based approaches to formal argumentation. Journal of Applied Logics - IfCoLog Journal, 8(6), 17931898.Google Scholar

Arieli, O., Borg, A., & Straßer, C. (2021b). Characterizations and classifications of argumentative entailments. In Bienvenu, M., Lakemeyer, G., & Erdem, E. (Eds.), Proceedings of the 18th International Conference on Principles of Knowledge Representation and Reasoning, 5262. Curran Associates, Inc.Google Scholar

Arieli, O., Borg, A., & Straßer, C. (2023). A postulate-deriven study of logical argumentation. Artificial Intelligence, 103966.CrossRefGoogle Scholar

Arieli, O., & Straßer, C. (2015). Sequent-based logical argumentation. Argument and Computation, 6(1), 7399.CrossRefGoogle Scholar

, Aristotle. (1984). The complete works of Aristotle. The revised Oxford translation. One volume digital edition. Princeton University Press.Google Scholar

Asher, N., & Morreau, M. (1991). Commonsense entailment: A modal theory of nonmonotonic reasoning. In van Eijck, J. (Ed.), Logics in AI. Lecture Notes in Computer Science, vol. 478. Springer. DOI: https://doi.org/10.1007/BFb0018430.Google Scholar

Asher, N., & Pelletier, F. J. (2012). More truths about generic truth. In Mari, A., Beyssade, C., & Prete, F. Del (Eds.), Genericity, 312333. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780199691807.003.0012.CrossRefGoogle Scholar

Baroni, P., Gabbay, D., & Giacomin, M. (Eds.). (2018, February). Handbook of formal argumentation. College Publications.Google Scholar

Baroni, P., Giacomin, M., & Guida, G. (2001). On the notion of strength in argumentation: Overcoming the epistemic/practical dichotomy. ECSQARU Workshop Adventures in Argumentation, 1–8. IRIS Institutional Research Information System: OPENBS Open Archive UniBS. https://iris.unibs.it/handle/11379/159298.Google Scholar

Batens, D. (1986). Dialectical dynamics within formal logics. Logique et Analyse, 114, 161173.Google Scholar

Batens, D. (2007). A universal logic approach to adaptive logics. Logica Universalis, 1(1), 221242.CrossRefGoogle Scholar

Batens, D. (2011). Logics for qualitative inductive generalization. Studia Logica, 97(1), 6180.CrossRefGoogle Scholar

Beirlaen, M., & Aliseda, A. (2014). A conditional logic for abduction. Synthese, 191(15), 37333758.CrossRefGoogle Scholar

Beirlaen, M., Heyninck, J., Pardo, P., & Straßer, C. (2018). Argument strength in formal argumentation. Journal of Applied Logics – IfCoLog Journal, 5(3), 629675.Google Scholar

Benferhat, S., Bonnefon, J. F., & da Silva Neves, R. (2005). An overview of possibilistic handling of default reasoning, with experimental studies. Synthese, 146(1–2), 5370.CrossRefGoogle Scholar

Benferhat, S., Cayrol, C., Dubois, D., Lang, J., & Prade, H. (1993). Inconsistency management and prioritized syntax-based entailment. International Joint Conference on Artificial Intelligence, 93, 640645.Google Scholar

Benferhat, S., Dubois, D., & Prade, H. (1992). Representing default rules in possibilistic logic. In Nebel, B., Rich, C., & Swartout, W. R. (Eds.), Proceedings of the Third International Conference on the Principles of Knowledge Representation and Reasoning, 673684. Morgan Kaufmann Publishers.Google Scholar

Benferhat, S., Dubois, D., & Prade, H. (1997). Some syntactic approaches to the handling of inconsistent knowledge bases: A comparative study. Part 1: The flat case. Studia Logica, 58, 1745.CrossRefGoogle Scholar

Benferhat, S., Dubois, D., & Prade, H. (1999). Possibilistic and standard probabilistic semantics of conditional knowledge bases. Journal of Logic and Computation, 9(6), 873895.CrossRefGoogle Scholar

Besnard, P., & Hunter, A. (2001). A logic-based theory of deductive arguments. Artificial Intelligence, 128(1), 203235.CrossRefGoogle Scholar

Besold, T. R., d’Avila Garcez, A., Stenning, K., van der Torre, L., & van Lambalgen, M. (2017). Reasoning in non-probabilistic uncertainty: Logic programming and neural-symbolic computing as examples. Minds and Machines, 27(1), 3777.CrossRefGoogle Scholar

Bondarenko, A., Dung, P. M., Kowalski, R. A., & Toni, F. (1997). An abstract, argumentation-theoretic approach to default reasoning. Artificial Intelligence, 93, 63101.CrossRefGoogle Scholar

Borg, A. (2020). Assumptive sequent-based argumentation. Journal of Applied Logics, 2631(3), 227294.Google Scholar

Borg, A., & Straßer, C. (2018). Relevance in structured argumentation. In Lang, J. (Ed.), Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, 17531759.CrossRefGoogle Scholar

Boutilier, C. (1994a). Conditional logics of normality: A modal approach. Artificial Intelligence, 68(1), 87154.CrossRefGoogle Scholar

Boutilier, C. (1994b). Unifying default reasoning and belief revision in a modal framework. Artificial Intelligence, 68(1), 3385.CrossRefGoogle Scholar

Brandom, R. (2009). Articulating reasons: An introduction to inferentialism. Harvard University Press.CrossRefGoogle Scholar

Brewka, G. (1989). Preferred subtheories: An extended logical framework for default reasoning. Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (II), 89, 10431048.Google Scholar

Brewka, G. (1991). Cumulative default logic: In defense of nonmonotonic inference rules. Artificial Intelligence, 50(2), 183205.CrossRefGoogle Scholar

Brown, J., & Simion, M. (2021). Reasons, justification, and defeat. Oxford University Press.CrossRefGoogle Scholar

Caminada, M., & Amgoud, L. (2007). On the evaluation of argumentation formalisms. Artificial Intelligence, 171, 286310.CrossRefGoogle Scholar

Caminada, M., Carnielli, W. A., & Dunne, P. E. (2012). Semi-stable semantics. Journal of Logic and Computation, 22(5), 12071254.CrossRefGoogle Scholar

Caminada, M., Modgil, S., & Oren, N. (2014). Preferences and unrestricted rebut. Computational Models of Argument: Proceedings of COMMA 2014, 209220.Google Scholar

Caminada, M., & Schulz, C. (2017). On the equivalence between assumptionbased argumentation and logic programming. Journal of Artificial Intelligence Research, 60, 779825.CrossRefGoogle Scholar

Cayrol, C. (1995). On the relation between argumentation and non-monotonic coherence-based entailment. Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, 95, 14431448.Google Scholar

Chisholm, R. M. (1963). Contrary-to-duty imperatives and deontic logic. Analysis, 24, 3336.CrossRefGoogle Scholar

Čyras, K., & Toni, F. (2015). Non-monotonic inference properties for assumptionbased argumentation. In Black, E., Modgil, S., N., & , Oren (Eds.), Theory and Applications of Formal Argumentation, vol. 9524, 92111. Springer. DOI: https://doi.org/10.1007/978-3-319-28460-6_6.CrossRefGoogle Scholar

Delgrande, J. P. (1987). A first-order conditional logic for prototypical properties. Artificial Intelligence, 33(1), 105130.CrossRefGoogle Scholar

Delgrande, J. P. (1998). On first-order conditional logics. Artificial Intelligence, 105(1), 105137.CrossRefGoogle Scholar

Denecker, M., Marek, V. W., & Truszczynski, M. (2011). Reiter’s default logic is a logic of autoepistemic reasoning and a good one, too. arXiv preprint arXiv:1108.3278.Google Scholar

Doyle, J., & McDermott, D. (1980). Nonmonotonic logic i. Artificial Intelligence, 13(1), 2.Google Scholar

Dubois, D., & Prade, H. (1990). An introduction to possibilistic and fuzzy logics. In Shafer, G. & Pearl, J. (Eds.), Readings in Uncertain Reasoning (pp. 742761). Morgan Kaufmann.Google Scholar

Dubois, D., & Prade, H. (1991). Possibilistic logic, preferential models, nonmonotonicity and related issues. In Proceedings Twelfth International Joint Conference on Artificial Intelligence, 419424.Google Scholar

Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artifical Intelligence, 77, 321358.CrossRefGoogle Scholar

Eagle, A. (2024). Probability and inductive logic. Cambridge University Press.Google Scholar

Eemeren, F., & Grootendorst, R. (2004). A systematic theory of argumentation: The pragma-dialectical approach. Cambridge University Press.Google Scholar

Eiter, T., Ianni, G., & Krennwallner, T. (2009). Answer set programming: A primer. Reasoning Web International Summer School, 40110.Google Scholar

Elio, R., & Pelletier, F. J. (1994). On relevance in non-monotonic reasoning: Some empirical studies. Relevance: American Association for Artificial Intelligence 1994 Fall Symposium Series, 6467.Google Scholar

Friedman, N., & Halpern, J. Y. (1996). Plausibility measures and default reasoning. Journal of the ACM, 48(4), 12971304.Google Scholar

Friedman, N., Halpern, J. Y., & Koller, D. (2000). First-order conditional logic for default reasoning revisited. ACM Transactions on Computational Logic, 1(2), 175207.CrossRefGoogle Scholar

Gabbay, D. M. (1985). Theoretical foundations for non-monotonic reasoning in expert systems. In Apt, K. R. (ed.), Logics and models of concurrent systems (pp. 439457). Springer.CrossRefGoogle Scholar

Gabbay, D., Giacomin, M., Guillermo, S., & Thimm, M. (Eds.). (2021). Handbook of formal argumentation. College Publications.Google Scholar

Gärdenfors, P. (1990). Belief revision and nonmonotonic logic: Two sides of the same coin? European Workshop on Logics in Artificial Intelligence, 5254.Google Scholar

Geffner, H. (1992). High-probabilities, model-preference and default arguments. Minds and Machines, 2, 5170.CrossRefGoogle Scholar

Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. ICLP/SLP, 88, 10701080.Google Scholar

Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive databases. New Generation Computing, 9(3–4), 365385.CrossRefGoogle Scholar

Gelfond, M., Lifschitz, V., Przymusinska, H., & Truszczynski, M. (1991). Disjunctive defaults. Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning, 230237.Google Scholar

Gelfond, M., Przymusinska, H., & Przymusinski, T. (1989). On the relationship between circumscription and negation as failure. Artificial Intelligence, 38(1), 7594.CrossRefGoogle Scholar

Giordano, L., Gliozzi, V., Olivetti, N., & Pozzato, G. L. (2009). Analytic tableaux calculi for KLM logics of nonmonotonic reasoning. ACM Transactions on Computational Logic (TOCL), 10(3), 18.CrossRefGoogle Scholar

Goldszmidt, M., & Pearl, J. (1990). On the relation between rational closure and system Z. Third International Workshop on Nonmonotonic Reasoning (South Lake Tahoe), 130140.Google Scholar

Goldszmidt, M., & Pearl, J. (1992). Rank-based systems: A simple approach to belief revision, belief update, and reasoning about evidence and actions. Proceedings of the Third International Conference on Knowledge Representation and Reasoning, 661672.Google Scholar

Goldszmidt, M., Morris, P., & Pearl, J. (1993). A maximum entropy approach to nonmonotonic reasoning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(3), 220232.CrossRefGoogle Scholar

Haenni, R. (2009). Probabilistic argumentation [Special issue: Combining Probability and Logic]. Journal of Applied Logics, 7(2), 155176.CrossRefGoogle Scholar

Hansen, J. (2008). Prioritized conditional imperatives: Problems and a new proposal. Autonomous Agents and Multi-Agent Systems, 17(1), 1135.CrossRefGoogle Scholar

Hart, H. L. (1948). The ascription of responsibility and rights. Proceedings of the Aristotelian Society, 49, 171194.CrossRefGoogle Scholar

Heyer, G. (1990). Semantics and knowledge representation in the analysis of generic descriptions. Journal of Semantics, 7(1), 93110.CrossRefGoogle Scholar

Heyninck, J., & Arieli, O. (2019). An argumentative characterization of disjunctive logic programming. EPIA Conference on Artificial Intelligence, 526538.Google Scholar

Heyninck, J., & Straßer, C. (2016). Relations between assumption-based approaches in nonmonotonic logic and formal argumentation. In Kern-Isberner, G. & Wassermann, R. (Eds.), Proceedings of NMR2016 (pp. 6576).Google Scholar

Heyninck, J., & Straßer, C. (2019). A fully rational argumentation system for preordered defeasible rules. In Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems (pp. 17041712).Google Scholar

Heyninck, J., & Straßer, C. (2021a). A comparative study of assumption-based argumentative approaches to reasoning with priorities. Journal of Applied Logics – IfCoLog Journal of Logics and Their Applications, 8(3), 737808.Google Scholar

Heyninck, J., & Straßer, C. (2021b). Rationality and maximal consistent sets for a fragment of ASPIC+ without undercut. Argument & Computation, (1), 347.CrossRefGoogle Scholar

Hölldobler, S., & Kalinke, Y. (1994). Towards a new massible parallel computational model for logic programming. Proceedings of the Workshop on Combining Symbolic and Connectionist Processing ECCAI, 6877.Google Scholar

Horty, J. F. (2002). Skepticism and floating conclusions. Artificial Intelligence, 135(1–2), 5572.CrossRefGoogle Scholar

Hunter, A., & Thimm, M. (2017). Probabilistic reasoning with abstract argumentation frameworks. Journal of Artificial Intelligence Research, 59, 565611.CrossRefGoogle Scholar

Kelly, K. T., & Lin, H. (2021). Beliefs, probabilities, and their coherent correspondence.Lotteries, Knowledge, and Rational Belief: Essays on the Lottery Paradox, (pp. 185222). Cambridge University Press.CrossRefGoogle Scholar

Konolige, K. (1988). On the relation between default and autoepistemic logic. Artificial Intelligence, 35(3), 343382.CrossRefGoogle Scholar

Kraus, S., Lehman, D., & Magidor, M. (1990). Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44, 167207.CrossRefGoogle Scholar

Lehmann, D. J. (1995). Another perspective on default reasoning. Annals of Mathematics and Artificial Intelligence, 15(1), 6182.CrossRefGoogle Scholar

Lehmann, D. J., & Magidor, M. (1990). Preferential logics: The predicate calculus case. Proceedings of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge, 5772.Google Scholar

Lehmann, D. J., & Magidor, M. (1992). What does a conditional knowledge base entail? Artificial Intelligence, 55(1), 160.CrossRefGoogle Scholar

Leitgeb, H. (2018). Neural network models of conditionals. In Introduction to formal philosophy (pp. 147176). Springer.CrossRefGoogle Scholar

Lewis, D. (1973). Counterfactuals. Harvard University Press.Google Scholar

Lewis, D. (1974). Semantic analyses for dyadic deontic logic. In Logical theory and semantic analysis: Essays dedicated to Stig Kanger on his fiftieth birthday (pp. 114). Springer.Google Scholar

Li, Z., Oren, N., & Parsons, S. (2018). On the links between argumentationbased reasoning and nonmonotonic reasoning. Lecture Notes in Computer Science vol. 10757 (pp. 6785). Springer.Google Scholar

Liao, B., Oren, N., van der Torre, L., & Villata, S. (2016). Prioritized norms and defaults in formal argumentation. Cariani, F., Grossi, D., Meheus, J., & Parent, Xavier (Eds.), Deontic Logic and Normative Systems. 12th International Conference, DEON 2014, Ghent, Belgium, July 12–15, 2014. Proceedings. Springer, pp. 139154.Google Scholar

Liao, B., Oren, N., van der Torre, L., & Villata, S. (2018). Prioritized norms in formal argumentation. Journal of Logic and Computation, 29(2), 215240.CrossRefGoogle Scholar

Lifschitz, V. (1989). Benchmark problems for formal nonmonotonic reasoning. In Reinfrank, M., de Kleer, J., Ginsberg, M. L., & Sandewall, E. (Eds.), Non-Monotonic Reasoning, Lecture Notes in Computer Science, vol. 346. Springer, 202219.CrossRefGoogle Scholar

Lin, F., & Shoham, Y. (1990). Epistemic semantics for fixed-points non-monotonic logics. Proceedings of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge, 111120.Google Scholar

Loui, R. P. (1995). Hart’s critics on defeasible concepts and ascriptivism. Proceedings of the 5th International Conference on Artificial Intelligence and Law, 2130.Google Scholar

Łukaszewicz, W. (1988). Considerations on default logic: An alternative approach. Computational Intelligence, 4(1), 116.CrossRefGoogle Scholar

Makinson, D. (2003). Bridges between classical and nonmonotonic logic. Logic Journal of IGPL, 11(1), 6996.CrossRefGoogle Scholar

Makinson, D. (2005). Bridges from classical to nonmonotonic logic (Vol. 5). King’s College Publications.Google Scholar

Makinson, D., & Van Der Torre, L. (2000). Input/Output logics. Journal of Philosophical Logic, 29, 383408.CrossRefGoogle Scholar

Makinson, D., & Van Der Torre, L. (2001). Constraints for Input/Output logics. Journal of Philosophical Logic, 30(2), 155185.CrossRefGoogle Scholar

Manhaeve, R., Dumanéiæ, S., Kimmig, A., Demeester, T., & De Raedt, L. (2021). Neural probabilistic logic programming in deepproblog. Artificial Intelligence, 298, 103504.CrossRefGoogle Scholar

McCarthy, J. (1980). Circumscription: A form of non-monotonic reasoning. Artificial Intelligence, 13, 2729.CrossRefGoogle Scholar

Mercier, H., & Sperber, D. (2011). Why do humans reason? Arguments for an argumentative theory. Behavioral and Brain Sciences, 34(2), 5774.CrossRefGoogle ScholarPubMed

Mercier, H., & Sperber, D. (2017). The enigma of reason. Harvard University Press.Google Scholar

Minker, J. (1994). Overview of disjunctive logic programming. Annals of Mathematics and Artificial Intelligence, 12(1), 124.CrossRefGoogle Scholar

Modgil, S., & Prakken, H. (2013). A general account of argumentation with preferences. Artificial Intelligence, 195, 361397.CrossRefGoogle Scholar

Modgil, S., & Prakken, H. (2014). The ASPIC+framework for structured argumentation: A tutorial. Argument & Computation, 5(1), 3162.CrossRefGoogle Scholar

Moretti, L., & Piazza, T. (2017). Defeaters in current epistemology: Introduction to the special issue. Synthese, 195(7), 28452854.CrossRefGoogle Scholar

Ng, R., & Subrahmanian, V. S. (1992). Probabilistic logic programming. Information and Computation, 101(2), 150201.CrossRefGoogle Scholar

Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., & Barry, M. (2001). An a-prolog decision support system for the space shuttle. Proceedings of the Third International Symposium on Practical Aspects of Declarative Languages, 169183.Google Scholar

Parent, X., & van der Torre, L. (2013). Input/output logic. In Gabbay, D., Horty, J., Parent, X., van der Meyden, R., & van der Torre, L. (Eds.), Handbook of deontic logic (pp. 499544, Vol. 1). College Publications.Google Scholar

Pearl, J. (1989). Probabilistic semantics for nonmonotonic reasoning: A survey. Proceedings of the First International Conference on Principles of Knowledge Representation and Reasoning, 505516.Google Scholar

Pearl, J. (1990). System Z: A natural ordering of defaults with tractable applications to nonmonotonic reasoning. TARK ’90: Proceedings of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge, 121135.Google Scholar

Pelletier, F. J., & Elio, R. (1997). What should default reasoning be, by default? Computational Intelligence, 13(2), 165187.CrossRefGoogle Scholar

Perelman, C., & Olbrechts-Tyteca, L. (1969, June). The new rhetoric: A treatise on argumentation. University of Notre Dame Press.Google Scholar

Pfeifer, N., & Kleiter, G. D. (2005). Coherence and nonmonotonicity in human reasoning. Synthese, 146(1–2), 93109.CrossRefGoogle Scholar

Pollock, J. (1991). A theory of defeasible reasoning. International Journal of Intelligent Systems, 6, 3354.CrossRefGoogle Scholar

Poole, D. (1985). On the comparison of theories: Preferring the most specific explanation. IJCAI, 85, 144147.Google Scholar

Poole, D. (1988). A logical framework for default reasoning. Artificial Intelligence, 36(1), 2747.CrossRefGoogle Scholar

Poole, D. (1991). The effect of knowledge on belief: Conditioning, specificity and the lottery paradox in default reasoning. Artificial Intelligence, 49(1–3), 281307.CrossRefGoogle Scholar

Prakken, H. (2012). Some reflections on two current trends in formal argumentation. Logic Programs, Norms and Action, 249272.CrossRefGoogle Scholar

Przymusinski, T. C. (1990). The well-founded semantics coincides with the three-valued stable semantics. Fundamenta Informaticae, 13(4), 445463.CrossRefGoogle Scholar

Reiter, R. (1981). On closed world data bases. In Readings in artificial intelligence (pp. 119140). Elsevier.CrossRefGoogle Scholar

Reiter, R., & Criscuolo, G. (1981). On interacting defaults. IJCAI, 81, 270276.Google Scholar

Rescher, N. (1976). Plausible reasoning: An introduction to the theory and practice of plausibilistic inference. Van Gorcum.Google Scholar

Rescher, N., & Manor, R. (1970). On inference from inconsistent premises. Theory and Decision, 1, 179217.CrossRefGoogle Scholar

Ross, W. D. (1930). The right and the good. Oxford University Press.Google Scholar

Rott, H. (2001). Change, choice and inference: A study of belief revision and nonmonotonic reasoning. Clarendon Press.CrossRefGoogle Scholar

Saldanha, E.-A. D. (2018). From logic programming to human reasoning: How to be artificially human. KI – Künstliche Intelligenz, 32(4), 283286.CrossRefGoogle Scholar

Satoh, K. (1989). A probabilistic interpretation for lazy nonmonotonic reasoning. Institute for New Generation Computer Technology.Google Scholar

Schaub, T., & Wang, K. (2001). A comparative study of logic programs with preference. IJCAI, 597602.Google Scholar

Schulz, C., & Toni, F. (2016). Justifying answer sets using argumentation. Theory and Practice of Logic Programming, 16(1), 59110.CrossRefGoogle Scholar

Schurz, G. (2005). Non-monotonic reasoning from an evolution-theoretic perspective: Ontic, logical and cognitive foundations. Synthese, 146(1–2), 3751.CrossRefGoogle Scholar

Sergot, M. J., Sadri, F., Kowalski, R. A., Kriwaczek, F., Hammond, P., & Cory, H. T. (1986). The British Nationality Act as a logic program. Communications of the ACM, 29(5), 370386.CrossRefGoogle Scholar

Shoham, Y. (1987). A semantical approach to nonmonotonic logics. In Ginsberg, M. L. (Ed.), Readings in non-monotonic reasoning (pp. 227249). Morgan Kaufmann.Google Scholar

Spohn, W. (1988, August). Ordinal conditional functions: A dynamic theory of epistemic states. In Harper, W. L. & Skyrms, B. (Eds.), Causation in decision, belief change and statistics (pp. 105134). Springer.CrossRefGoogle Scholar

Stalnaker, R. (1994). What is a nonmonotonic consequence relation? Fundamenta Informaticae, 21(1), 721.CrossRefGoogle Scholar

Stalnaker, R. F. (1968). A theory of conditionals. In Reischer, N. (Ed.), Studies in logical theory. Basil Blackwell.Google Scholar

Stenning, K., & Van Lambalgen, M. (2008). Human reasoning and cognitive science. MIT Press.CrossRefGoogle Scholar

Straßer, C. (2009a). An adaptive logic for rational closure. The many sides of logic, 4767.Google Scholar

Straßer, C. (2009b). The many sides of logic. In Carnielli, M. E. C. Walter & D’Ottaviano, I. M. L. (Eds.). College Publications.Google Scholar

Straßer, C. (2014). Adaptive logic and defeasible reasoning: Applications in argumentation, normative reasoning and default reasoning. (Trends in Logic Vol. 38). Springer.Google Scholar

Straßer, C., Beirlaen, M., & Van De Putte, F. (2016). Adaptive logic characterizations of input/output logic. Studia Logica, 104(5), 869916.CrossRefGoogle Scholar

Straßer, C., & Michajlova, L. (2023). Evaluating and selecting arguments in the context of higher order uncertainty. Frontiers in Artificial Intelligence, 6, 1133998.CrossRefGoogle ScholarPubMed

Straßer, C., & Pardo, P. (2021). Prioritized defaults and formal argumentation. In Liu, F., Marra, A., Portner, P., & Van de Putte, F. (Eds.), Proceedings of DEON2020/2021 (pp. 427446). College Publications.Google Scholar

Straßer, C., & Seselja, D. (2010). Towards the proof-theoretic unification of Dung’s argumentation framework: An adaptive logic approach. Journal of Logic and Computation, 21(2), 133156.CrossRefGoogle Scholar

Toni, F. (2014). A tutorial on assumption-based argumentation. Argument & Computation, 5(1), 89117.CrossRefGoogle Scholar

Toulmin, S. E. (1958). The Uses of Argument. Cambridge University Press.Google Scholar

van Berkel, K., & Straßer, C. (2022). Reasoning with and about norms in logical argumentation. In Toni, F., Polberg, S., Booth, R., Caminada, M., & Kido, H. (Eds.), Frontiers in artificial intelligence and applications: Computational models of argument, proceedings (COMMA22) (pp. 332343, Vol. 353). IOS Press.Google Scholar

Van De Putte, F. (2013). Default assumptions and selection functions: A generic framework for non-monotonic logics. In Advances in artificial intelligence and its applications. Lecture Notes in Computer Science, vol. 8265 (pp. 5467). Springer.CrossRefGoogle Scholar

Van De Putte, F., Beirlaen, M., & Meheus, J. (2019). Adaptive deontic logics. Handbook of Deontic Logic and Normative Systems, 2, 367459. College Publications.Google Scholar

Van Fraassen, B. C. (1972). The logic of conditional obligation. Journal of Philosophical Logic, 1, 417438.CrossRefGoogle Scholar

Vesic, S. (2013). Identifying the class of maxi-consistent operators in argumentation. Journal of Artificial Intelligence Research, 47, 7193.CrossRefGoogle Scholar

Vreeswijk, G. A. W. (1993). Studies in defeasible argumentation [Doctoral dissertation, Free University Amsterdam. Department of Computer Science].Google Scholar

Walton, D., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge University Press.CrossRefGoogle Scholar

Young, A. P., Modgil, S., & Rodrigues, O. (2016). Prioritised default logic as rational argumentation. Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems, 626634.Google Scholar