Each is located high up at a variety of exotic sites, including on volcanoes in Hawaii and Mexico, mountains in Arizona and the Spanish Sierra Nevada, in the Atacama Desert of Chile, and in Antarctica.
A team of 200 scientists pointed the networked telescopes towards M87 and scanned its heart over a period of 10 days.
The information they gathered was too much to be sent across the internet. Instead, the data was stored on hundreds of hard drives that were flown to central processing centres in Boston, US, and Bonn, Germany, to assemble the information. Katie Bouman a PhD student at MIT developed an algorithm that pieced together the data from the EHT. Without her contribution the project would not have been possible. Prof Doeleman described the achievement as "an extraordinary scientific feat".
"We have achieved something presumed to be impossible just a generation ago," he said.
"Breakthroughs in technology, connections between the world's best radio observatories, and innovative algorithms all came together to open an entirely new window on black holes."
The team is also imaging the supermassive black hole at the centre of our own galaxy, the Milky Way.
Odd though it may sound, that is harder than getting an image from a distant galaxy 55 million light-years away. This is because, for some unknown reason, the "ring of fire" around the black hole at the heart of the Milky Way is smaller and dimmer.
Follow Pallab on Twitter, external
How to see a Black Hole: The Universe's Greatest Mystery can be seen the UK at 21:00 on BBC Four on Wednesday 10 April.