Aemisegger, F., Vogel, R., Graf, P., Dahinden, F., Villiger, L., Jansen, F., Bony, S., Stevens, B., and Wernli, H.: How Rossby wave breaking modulates the water cycle in the North Atlantic trade wind region, Weather Clim. Dynam., 2, 281–309, https://doi.org/10.5194/wcd-2-281-2021, 2021. a
Australian Institute of Marine Science (AIMS): Northern Australia Automated Marine Weather and Oceanographic Stations, Sites: [Davies Reef], AIMS [data set], https://doi.org/10.25845/5c09bf93f315d, 2020. a
Australian Institute of Marine Science (AIMS): Coral Bleaching Events, https://www.aims.gov.au/research-topics/environmental-issues/coral-bleaching/coral-bleaching-events (last access: 1 July 2025), 2025. a, b
Bainbridge, S. J.: Temperature and light patterns at four reefs along the Great Barrier Reef during the 2015–2016 austral summer: understanding patterns of observed coral bleaching, J. Oper. Oceanogr., 10, 16–29, https://doi.org/10.1080/1755876X.2017.1290863, 2017. a, b
Baird, A. H., Keith, S. A., Woolsey, E., Yoshida, R., and Naruse, T.: Rapid coral mortality following unusually calm and hot conditions on Iriomote, Japan, F1000Research, 6, 1728, https://doi.org/10.12688/f1000research.12660.2, 2018. a
Barnes, M. A., Reeder, M. J., and Ndarana, T.: Rossby wave breaking morphologies on the Southern Hemisphere dynamical tropopause, J. Climate, 38, 4825–4844, https://doi.org/10.1175/JCLI-D-24-0461.1, 2025. a
Benthuysen, J. A., Smith, G. A., Spillman, C. M., and Steinberg, C. R.: Subseasonal prediction of the 2020 Great Barrier Reef and Coral Sea marine heatwave, Environ. Res. Lett., 16, 124050, https://doi.org/10.1088/1748-9326/ac3aa1, 2021. a
Berkelmans, R.: Time-integrated thermal bleaching thresholds of reefs and their variation on the Great Barrier Reef, Mar. Ecol. Prog. Ser., 229, 73–82, https://doi.org/10.3354/meps229073, 2002. a
Chambers, D. P., Tapley, B. D., and Stewart, R. H.: Anomalous warming in the Indian Ocean coincident with El Niño, J. Geophys. Res.-Oceans, 104, 3035–3047, https://doi.org/10.1029/1998JC900085, 1999. a
Crowe, P. R.: The Seasonal Variation in the Strength of the Trades, Transactions and Papers (Institute of British Geographers), 16, 25–47, https://doi.org/10.2307/621211, 1950. a, b
Dao, T. L., Vincent, C. L., Huang, Y., and Soderholm, J. S.: Modulations of local rainfall in northeast Australia associated with the Madden–Julian oscillation during austral summer, Q. J. Roy. Meteor. Soc., 151, e4995, https://doi.org/10.1002/qj.4995, 2025. a
Di Lorenzo, E. and Mantua, N.: Multi-year persistence of the 2014/15 North Pacific marine heatwave, Nat. Clim. Change, 6, 1042–1047, https://doi.org/10.1038/nclimate3082, 2016. a
Glynn, P. W.: Mass mortalities of echinoids and other reef flat organisms coincident with midday, low water exposures in Puerto Rico, Mar. Biol., 1, 226–243, https://doi.org/10.1007/BF00347116, 1968. a
Gregory, C. H., Holbrook, N. J., Spillman, C. M., and Marshall, A. G.: Combined Role of the MJO and ENSO in Shaping Extreme Warming Patterns and Coral Bleaching Risk in the Great Barrier Reef, Geophys. Res. Lett., 51, e2024GL108810, https://doi.org/10.1029/2024gl108810, 2024. a
Harrison, D. P., Baird, M., Harrison, L., Utembe, S., Schofield, R., Escobar Correa, R., Mongin, M., and Rizwi, F.: Reef Restoration and Adaptation Program: Environmental Modelling of Large Scale Solar Radiation Management. A report provided to the Australian Government by the Reef Restoration and Adaptation Program, 83 pp., 2019. a
Henley, B. J., McGregor, H. V., King, A. D., Hoegh-Guldberg, O., Arzey, A. K., Karoly, D. J., Lough, J. M., DeCarlo, T. M., and Linsley, B. K.: Highest ocean heat in four centuries places Great Barrier Reef in danger, Nature, 632, 320–326, https://doi.org/10.1038/s41586-024-07672-x, 2024. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023a. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023b. a
Holbrook, N. J., Scannell, H. A., Sen Gupta, A., Benthuysen, J. A., Feng, M., Oliver, E. C. J., Alexander, L. V., Burrows, M. T., Donat, M. G., Hobday, A. J., Moore, P. J., Perkins-Kirkpatrick, S. E., Smale, D. A., Straub, S. C., and Wernberg, T.: A global assessment of marine heatwaves and their drivers, Nat. Commun., 10, 2624, https://doi.org/10.1038/s41467-019-10206-z, 2019. a
Holland, G. J.: Interannual Variability of the Australian Summer Monsoon at Darwin: 1952–82, Mon. Weather Rev., 114, 594–604, https://doi.org/10.1175/1520-0493(1986)114<0594:IVOTAS>2.0.CO;2, 1986. a
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W.: On the use and significance of isentropic potential vorticity maps, Q. J. Roy. Meteor. Soc., 111, 877–946, https://doi.org/10.1002/qj.49711147002, 1985. a
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., and Zhang, H.-M.: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1, J. Climate, 34, 2923–2939, https://doi.org/10.1175/JCLI-D-20-0166.1, 2021. a, b
Jokiel, P. L. and Brown, E. K.: Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii, Glob. Change Biol., 10, 1627–1641, https://doi.org/10.1111/j.1365-2486.2004.00836.x, 2004. a
Karnauskas, K. B.: Physical Diagnosis of the 2016 Great Barrier Reef Bleaching Event, Geophys. Res. Lett., 47, https://doi.org/10.1029/2019GL086177, 2020. a, b
Kawamoto, K., Nakajima, T., and Nakajima, T. Y.: A Global Determination of Cloud Microphysics with AVHRR Remote Sensing, J. Climate, 14, 2054–2068, https://doi.org/10.1175/1520-0442(2001)014<2054:AGDOCM>2.0.CO;2, 2001. a
Klocke, D., Brueck, M., Hohenegger, C., and Stevens, B.: Rediscovery of the doldrums in storm-resolving simulations over the tropical Atlantic, Nat. Geosci., 10, 891–896, https://doi.org/10.1038/s41561-017-0005-4, 2017. a, b
Lee, T., Hobbs, W. R., Willis, J. K., Halkides, D., Fukumori, I., Armstrong, E. M., Hayashi, A. K., Liu, W. T., Patzert, W., and Wang, O.: Record warming in the South Pacific and western Antarctica associated with the strong central‐Pacific El Niño in 2009–10, Geophys. Res. Lett., 37, https://doi.org/10.1029/2010gl044865, 2010. a, b
Li, Y., Chen, Q., Liu, X., Li, J., Xing, N., Xie, F., Feng, J., Zhou, X., Cai, H., and Wang, Z.: Long-Term Trend of the Tropical Pacific Trade Winds Under Global Warming and Its Causes, J. Geophys. Res.-Oceans, 124, 2626–2640, https://doi.org/10.1029/2018JC014603, 2019. a
Liu, Z. and Philander, S. G. H.: How Different Wind Stress Patterns Affect the Tropical-Subtropical Circulations of the Upper Ocean, J. Phys. Oceanogr., 25, 449–462, https://doi.org/10.1175/1520-0485(1995)025<0449:HDWSPA>2.0.CO;2, 1995. a
Lyons, W. F. and Bonell, M.: Daily meso-scale rainfall in the tropical wet/dry climate of the Townsville area, north-east Queensland during the 1988–1989 wet season: Synoptic-scale airflow considerations, Int. J. Climatol., 12, 655–684, https://doi.org/10.1002/joc.3370120702, 1992. a
Malkus, J. S.: On the structure of the trade wind moist layer, Physical Oceanography and Meteorology, 13, 1958. a, b, c
Marchand, R. and Ackerman, T.: An analysis of cloud cover in multiscale modeling framework global climate model simulations using 4 and 1 km horizontal grids, J. Geophys. Res.-Atmos., 115, https://doi.org/10.1029/2009JD013423, 2010. a
Merrifield, M. A.: A Shift in Western Tropical Pacific Sea Level Trends during the 1990s, J. Climate, 24, 4126–4138, https://doi.org/10.1175/2011jcli3932.1, 2011. a
Murphy, M. J., Siems, S. T., and Manton, M. J.: Regional variation in the wet season of northern Australia, Mon. Weather Rev., 144, 4941–4962, https://doi.org/10.1175/MWR-D-16-0133.1, 2016. a
Nakajima, T. Y. and Nakajima, T.: Wide-Area Determination of Cloud Microphysical Properties from NOAA AVHRR Measurements for FIRE and ASTEX Regions, J. Atmos. Sci., 52, 4043–4059, https://doi.org/10.1175/1520-0469(1995)052<4043:WADOCM>2.0.CO;2, 1995. a
Ndarana, T. and Waugh, D. W.: A Climatology of Rossby Wave Breaking on the Southern Hemisphere Tropopause, J. Atmos. Sci., 68, 798–811, https://doi.org/10.1175/2010JAS3460.1, 2011. a
Nuijens, L. and Stevens, B.: The Influence of Wind Speed on Shallow Marine Cumulus Convection, J. Atmos. Sci., 69, 168–184, https://doi.org/10.1175/jas-d-11-02.1, 2012. a
O'Brien, L. and Reeder, M. J.: Southern Hemisphere summertime Rossby waves and weather in the Australian region, Q. J. Roy. Meteor. Soc., 143, 2374–2388, https://doi.org/10.1002/qj.3090, 2017. a
Pope, M., Jakob, C., and Reeder, M. J.: Regimes of the North Australian Wet Season, J. Climate, 22, 6699–6715, https://doi.org/10.1175/2009jcli3057.1, 2009. a, b
Richards, L. S., Siems, S. T., Huang, Y., Zhao, W., Harrison, D. P., Manton, M. J., and Reeder, M. J.: The meteorological drivers of mass coral bleaching on the central Great Barrier Reef during the 2022 La Niña, Sci. Rep., 14, 23867, https://doi.org/10.1038/s41598-024-74181-2, 2024. a, b, c, d, e, f, g
Sekizawa, S., Nakamura, H., and Kosaka, Y.: Interannual Variability of the Australian Summer Monsoon System Internally Sustained Through Wind‐Evaporation Feedback, Geophys. Res. Lett., 45, 7748–7755, https://doi.org/10.1029/2018gl078536, 2018. a
Sekizawa, S., Nakamura, H., and Kosaka, Y.: Interannual Variability of the Australian Summer Monsoon Sustained through Internal Processes: Wind–Evaporation Feedback, Dynamical Air–Sea Interaction, and Soil Moisture Memory, J. Climate, 36, 983–1000, https://doi.org/10.1175/jcli-d-22-0116.1, 2023. a
Skirving, W., Heron, M., and Heron, S.: The Hydrodynamics of a Bleaching Event: Implications for Management and Monitoring, American Geophysical Union, 145–161, 2006. a
Smith, G. A. and Trewin, B.: Seasonal climate summary southern hemisphere (autumn 2020): another coral bleaching event for the Great Barrier Reef without an active El Niño, Journal of Southern Hemisphere Earth Systems Science, 74, ES24014, https://doi.org/10.1071/es24014, 2024. a
Smith, N. P.: Weather and hydrographic conditions associated with coral bleaching: Lee Stocking Island, Bahamas, Coral Reefs, 20, 415–422, https://doi.org/10.1007/s00338-001-0189-2, 2001. a
Spady, B. L., Skirving, W. J., Liu, G., De La Cour, J. L., McDonald, C. J., and Manzello, D. P.: Unprecedented early-summer heat stress and forecast of coral bleaching on the Great Barrier Reef, 2021–2022, F1000Res, 11, 127, https://doi.org/10.12688/f1000research.108724.4, 2022. a
Spencer, T., Teleki, K. A., Bradshaw, C., and Spalding, M. D.: Coral Bleaching in the Southern Seychelles During the 1997–1998 Indian Ocean Warm Event, Mar. Pollut. Bull., 40, 569–586, https://doi.org/10.1016/S0025-326X(00)00026-6, 2000. a
Sprenger, M. and Wernli, H.: The LAGRANTO Lagrangian analysis tool – version 2.0, Geosci. Model Dev., 8, 2569–2586, https://doi.org/10.5194/gmd-8-2569-2015, 2015. a
Takahashi, C. and Watanabe, M.: Pacific trade winds accelerated by aerosol forcing over the past two decades, Nat. Clim. Change, 6, 768–772, https://doi.org/10.1038/nclimate2996, 2016. a
Thiam, M., de Coetlogon, G., Wade, M., Sarr, M., and Diop, B.: Air–sea feedback in the northeastern tropical Atlantic in boreal summer at intraseasonal time-scales, Q. J. Roy. Meteor. Soc., 151, e4982, https://doi.org/10.1002/qj.4982, 2025. a
Troup, A. J.: Variations in upper tropospheric flow associated with the onset of the Australian summer monsoon, Mausam, 12, 217–230, 1961. a
Wheeler, M. C. and Hendon, H. H.: An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction, Mon. Weather Rev., 132, 1917–1932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2, 2004. a, b
Wheeler, M. C., Hendon, H. H., Cleland, S., Meinke, H., and Donald, A.: Impacts of the Madden–Julian Oscillation on Australian Rainfall and Circulation, J. Climate, 22, 1482–1498, https://doi.org/10.1175/2008JCLI2595.1, 2009. a
Windmiller, J. M.: The Calm and Variable Inner Life of the Atlantic Intertropical Convergence Zone: The Relationship Between the Doldrums and Surface Convergence, Geophys. Res. Lett., 51, e2024GL109460, https://doi.org/10.1029/2024GL109460, 2024. a, b
Wyrtki, K. and Meyers, G.: The Trade Wind Field Over the Pacific Ocean, J. Appl. Meteorol. Clim., 15, 698–704, https://doi.org/10.1175/1520-0450(1976)015<0698:TTWFOT>2.0.CO;2, 1976. a, b
Zhao, W., Huang, Y., Siems, S., and Manton, M.: The Role of Clouds in Coral Bleaching Events Over the Great Barrier Reef, Geophys. Res. Lett., 48, e2021GL093936, https://doi.org/10.1029/2021GL093936, 2021. a, b