Trending Papers - Hugging Face

14 min read Original article ↗

new

Get trending papers in your email inbox once a day!

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Submitted by

evanking

Flavors of Moonshine: Tiny Specialized ASR Models for Edge Devices

Monolingual ASR models trained on a balanced mix of high-quality, pseudo-labeled, and synthetic data outperform multilingual models for small model sizes, achieving superior error rates and enabling on-device ASR for underrepresented languages.

· Published on Sep 2, 2025

Submitted by

evanking

Submitted by

Rbin

RAG-Anything: All-in-One RAG Framework

RAG-Anything is a unified framework that enhances multimodal knowledge retrieval by integrating cross-modal relationships and semantic matching, outperforming existing methods on complex benchmarks.

Submitted by

Rbin

RAG-Anything: All-in-One RAG Framework

RAG-Anything is a unified framework that enhances multimodal knowledge retrieval by integrating cross-modal relationships and semantic matching, outperforming existing methods on complex benchmarks.

Submitted by

taesiri

Submitted by

taesiri

Submitted by

andito

Submitted by

andito

Submitted by

UglyToilet

MemOS: A Memory OS for AI System

MemOS, a memory operating system for Large Language Models, addresses memory management challenges by unifying plaintext, activation-based, and parameter-level memories, enabling efficient storage, retrieval, and continual learning.

· Published on Jul 4, 2025

Submitted by

UglyToilet

MemOS: A Memory OS for AI System

MemOS, a memory operating system for Large Language Models, addresses memory management challenges by unifying plaintext, activation-based, and parameter-level memories, enabling efficient storage, retrieval, and continual learning.

Submitted by

akhaliq

Submitted by

akhaliq

Submitted by

taesiri

Qwen3-TTS Technical Report

The Qwen3-TTS series presents advanced multilingual text-to-speech models with voice cloning and controllable speech generation capabilities, utilizing dual-track LM architecture and specialized speech tokenizers for efficient streaming synthesis.

Qwen Qwen · Published on Jan 22, 2026

Submitted by

taesiri

Qwen3-TTS Technical Report

The Qwen3-TTS series presents advanced multilingual text-to-speech models with voice cloning and controllable speech generation capabilities, utilizing dual-track LM architecture and specialized speech tokenizers for efficient streaming synthesis.

Qwen Qwen · Jan 22, 2026

Submitted by

nepfaff

Submitted by

nepfaff

Submitted by

daixufang

Submitted by

daixufang

Submitted by

akhaliq

Mem0: Building Production-Ready AI Agents with Scalable Long-Term Memory

Mem0, a memory-centric architecture with graph-based memory, enhances long-term conversational coherence in LLMs by efficiently extracting, consolidating, and retrieving information, outperforming existing memory systems in terms of accuracy and computational efficiency.

· Published on Apr 28, 2025

Submitted by

akhaliq

Submitted by

Dongchao

HeartMuLa: A Family of Open Sourced Music Foundation Models

A suite of open-source music foundation models is introduced, featuring components for audio-text alignment, lyric recognition, music coding, and large language model-based song generation with controllable attributes and scalable parameterization.

· Published on Jan 15, 2026

Submitted by

Dongchao

HeartMuLa: A Family of Open Sourced Music Foundation Models

A suite of open-source music foundation models is introduced, featuring components for audio-text alignment, lyric recognition, music coding, and large language model-based song generation with controllable attributes and scalable parameterization.

Submitted by

taesiri

Towards Robust Mathematical Reasoning

IMO-Bench, a suite of advanced reasoning benchmarks, evaluates mathematical reasoning capabilities of foundation models using IMO-level problems and detailed grading guidelines, achieving gold-level performance with Gemini Deep Think.

  • 20 authors

· Published on Nov 3, 2025

Submitted by

taesiri

Towards Robust Mathematical Reasoning

IMO-Bench, a suite of advanced reasoning benchmarks, evaluates mathematical reasoning capabilities of foundation models using IMO-level problems and detailed grading guidelines, achieving gold-level performance with Gemini Deep Think.

Submitted by

richardxp888

Submitted by

richardxp888

Submitted by

hao-li

Agent READMEs: An Empirical Study of Context Files for Agentic Coding

Agentic coding tools receive goals written in natural language as input, break them down into specific tasks, and write or execute the actual code with minimal human intervention. Central to this process are agent context files ("READMEs for agents") that provide persistent, project-level instructions. In this paper, we conduct the first large-scale empirical study of 2,303 agent context files from 1,925 repositories to characterize their structure, maintenance, and content. We find that these files are not static documentation but complex, difficult-to-read artifacts that evolve like configuration code, maintained through frequent, small additions. Our content analysis of 16 instruction types shows that developers prioritize functional context, such as build and run commands (62.3%), implementation details (69.9%), and architecture (67.7%). We also identify a significant gap: non-functional requirements like security (14.5%) and performance (14.5%) are rarely specified. These findings indicate that while developers use context files to make agents functional, they provide few guardrails to ensure that agent-written code is secure or performant, highlighting the need for improved tooling and practices.

  • 11 authors

· Published on Nov 17, 2025

Submitted by

hao-li

Agent READMEs: An Empirical Study of Context Files for Agentic Coding

Agentic coding tools receive goals written in natural language as input, break them down into specific tasks, and write or execute the actual code with minimal human intervention. Central to this process are agent context files ("READMEs for agents") that provide persistent, project-level instructions. In this paper, we conduct the first large-scale empirical study of 2,303 agent context files from 1,925 repositories to characterize their structure, maintenance, and content. We find that these files are not static documentation but complex, difficult-to-read artifacts that evolve like configuration code, maintained through frequent, small additions. Our content analysis of 16 instruction types shows that developers prioritize functional context, such as build and run commands (62.3%), implementation details (69.9%), and architecture (67.7%). We also identify a significant gap: non-functional requirements like security (14.5%) and performance (14.5%) are rarely specified. These findings indicate that while developers use context files to make agents functional, they provide few guardrails to ensure that agent-written code is secure or performant, highlighting the need for improved tooling and practices.

  • 11 authors

· Nov 17, 2025

Submitted by

taesiri

Submitted by

taesiri

Submitted by

yangzhi1

QuantaAlpha: An Evolutionary Framework for LLM-Driven Alpha Mining

Financial markets are noisy and non-stationary, making alpha mining highly sensitive to noise in backtesting results and sudden market regime shifts. While recent agentic frameworks improve alpha mining automation, they often lack controllable multi-round search and reliable reuse of validated experience. To address these challenges, we propose QuantaAlpha, an evolutionary alpha mining framework that treats each end-to-end mining run as a trajectory and improves factors through trajectory-level mutation and crossover operations. QuantaAlpha localizes suboptimal steps in each trajectory for targeted revision and recombines complementary high-reward segments to reuse effective patterns, enabling structured exploration and refinement across mining iterations. During factor generation, QuantaAlpha enforces semantic consistency across the hypothesis, factor expression, and executable code, while constraining the complexity and redundancy of the generated factor to mitigate crowding. Extensive experiments on the China Securities Index 300 (CSI 300) demonstrate consistent gains over strong baseline models and prior agentic systems. When utilizing GPT-5.2, QuantaAlpha achieves an Information Coefficient (IC) of 0.1501, with an Annualized Rate of Return (ARR) of 27.75% and a Maximum Drawdown (MDD) of 7.98%. Moreover, factors mined on CSI 300 transfer effectively to the China Securities Index 500 (CSI 500) and the Standard & Poor's 500 Index (S&P 500), delivering 160% and 137% cumulative excess return over four years, respectively, which indicates strong robustness of QuantaAlpha under market distribution shifts.

Submitted by

yangzhi1

QuantaAlpha: An Evolutionary Framework for LLM-Driven Alpha Mining

Financial markets are noisy and non-stationary, making alpha mining highly sensitive to noise in backtesting results and sudden market regime shifts. While recent agentic frameworks improve alpha mining automation, they often lack controllable multi-round search and reliable reuse of validated experience. To address these challenges, we propose QuantaAlpha, an evolutionary alpha mining framework that treats each end-to-end mining run as a trajectory and improves factors through trajectory-level mutation and crossover operations. QuantaAlpha localizes suboptimal steps in each trajectory for targeted revision and recombines complementary high-reward segments to reuse effective patterns, enabling structured exploration and refinement across mining iterations. During factor generation, QuantaAlpha enforces semantic consistency across the hypothesis, factor expression, and executable code, while constraining the complexity and redundancy of the generated factor to mitigate crowding. Extensive experiments on the China Securities Index 300 (CSI 300) demonstrate consistent gains over strong baseline models and prior agentic systems. When utilizing GPT-5.2, QuantaAlpha achieves an Information Coefficient (IC) of 0.1501, with an Annualized Rate of Return (ARR) of 27.75% and a Maximum Drawdown (MDD) of 7.98%. Moreover, factors mined on CSI 300 transfer effectively to the China Securities Index 500 (CSI 500) and the Standard & Poor's 500 Index (S&P 500), delivering 160% and 137% cumulative excess return over four years, respectively, which indicates strong robustness of QuantaAlpha under market distribution shifts.

Submitted by

myownskyW7

Submitted by

myownskyW7

Submitted by

taesiri

Submitted by

taesiri

Submitted by

taesiri

Submitted by

taesiri

Submitted by

zhangxgu

UI-Venus-1.5 Technical Report

UI-Venus-1.5 is a unified GUI agent with improved performance through mid-training stages, online reinforcement learning, and model merging techniques.

Submitted by

zhangxgu

UI-Venus-1.5 Technical Report

UI-Venus-1.5 is a unified GUI agent with improved performance through mid-training stages, online reinforcement learning, and model merging techniques.

Submitted by

taesiri

DeepCode: Open Agentic Coding

DeepCode, a fully autonomous framework, addresses the challenges of document-to-codebase synthesis by optimizing information flow through source compression, structured indexing, knowledge injection, and error correction, achieving state-of-the-art performance and surpassing human experts.

  • 5 authors

· Published on Dec 8, 2025

Submitted by

taesiri

DeepCode: Open Agentic Coding

DeepCode, a fully autonomous framework, addresses the challenges of document-to-codebase synthesis by optimizing information flow through source compression, structured indexing, knowledge injection, and error correction, achieving state-of-the-art performance and surpassing human experts.

Kronos: A Foundation Model for the Language of Financial Markets

Kronos, a specialized pre-training framework for financial K-line data, outperforms existing models in forecasting and synthetic data generation through a unique tokenizer and autoregressive pre-training on a large dataset.

  • 7 authors

· Published on Aug 2, 2025

Submitted by

rajkumarrawal

Recursive Language Models

We study allowing large language models (LLMs) to process arbitrarily long prompts through the lens of inference-time scaling. We propose Recursive Language Models (RLMs), a general inference strategy that treats long prompts as part of an external environment and allows the LLM to programmatically examine, decompose, and recursively call itself over snippets of the prompt. We find that RLMs successfully handle inputs up to two orders of magnitude beyond model context windows and, even for shorter prompts, dramatically outperform the quality of base LLMs and common long-context scaffolds across four diverse long-context tasks, while having comparable (or cheaper) cost per query.

Submitted by

rajkumarrawal

Recursive Language Models

We study allowing large language models (LLMs) to process arbitrarily long prompts through the lens of inference-time scaling. We propose Recursive Language Models (RLMs), a general inference strategy that treats long prompts as part of an external environment and allows the LLM to programmatically examine, decompose, and recursively call itself over snippets of the prompt. We find that RLMs successfully handle inputs up to two orders of magnitude beyond model context windows and, even for shorter prompts, dramatically outperform the quality of base LLMs and common long-context scaffolds across four diverse long-context tasks, while having comparable (or cheaper) cost per query.

Submitted by

fdugyt

Submitted by

fdugyt

Submitted by

ChilleD

Submitted by

ChilleD

Submitted by

unilm

VibeVoice Technical Report

VibeVoice synthesizes long-form multi-speaker speech using next-token diffusion and a highly efficient continuous speech tokenizer, achieving superior performance and fidelity.

Submitted by

unilm

VibeVoice Technical Report

VibeVoice synthesizes long-form multi-speaker speech using next-token diffusion and a highly efficient continuous speech tokenizer, achieving superior performance and fidelity.

LightRAG: Simple and Fast Retrieval-Augmented Generation

LightRAG improves Retrieval-Augmented Generation by integrating graph structures for enhanced contextual awareness and efficient information retrieval, achieving better accuracy and response times.

  • 5 authors

· Published on Oct 8, 2024

Submitted by

tianyilt

Submitted by

tianyilt

Submitted by

taesiri

LTX-2: Efficient Joint Audio-Visual Foundation Model

LTX-2 is an open-source audiovisual diffusion model that generates synchronized video and audio content using a dual-stream transformer architecture with cross-modal attention and classifier-free guidance.

· Published on Jan 6, 2026

Submitted by

taesiri

Submitted by

akhaliq

Submitted by

akhaliq

Self-Supervised Prompt Optimization

A self-supervised framework optimizes prompts for both closed and open-ended tasks by evaluating LLM outputs without external references, reducing costs and required data.

· Published on Feb 7, 2025

Self-Supervised Prompt Optimization

A self-supervised framework optimizes prompts for both closed and open-ended tasks by evaluating LLM outputs without external references, reducing costs and required data.

Submitted by

akhaliq

Submitted by

akhaliq

Submitted by

Dongchao

UniAudio 2.0: A Unified Audio Language Model with Text-Aligned Factorized Audio Tokenization

Researchers developed a discrete audio codec called ReasoningCodec that separates audio into reasoning and reconstruction tokens for improved understanding and generation, and created UniAudio 2.0, a unified autoregressive model trained on large-scale text and audio data that shows strong performance across various audio tasks and generalizes well in few-shot and zero-shot scenarios.

  • 6 authors

· Published on Feb 4, 2026

Submitted by

Dongchao

UniAudio 2.0: A Unified Audio Language Model with Text-Aligned Factorized Audio Tokenization

Researchers developed a discrete audio codec called ReasoningCodec that separates audio into reasoning and reconstruction tokens for improved understanding and generation, and created UniAudio 2.0, a unified autoregressive model trained on large-scale text and audio data that shows strong performance across various audio tasks and generalizes well in few-shot and zero-shot scenarios.

Submitted by

Jeff-Wang

Submitted by

Jeff-Wang

Submitted by

Luo2003

Submitted by

Luo2003

Submitted by

taesiri

Submitted by

taesiri

Continuous Audio Language Models

Audio Language Models (ALM) have emerged as the dominant paradigm for speech and music generation by representing audio as sequences of discrete tokens. Yet, unlike text tokens, which are invertible, audio tokens are extracted from lossy codecs with a limited bitrate. As a consequence, increasing audio quality requires generating more tokens, which imposes a trade-off between fidelity and computational cost. We address this issue by studying Continuous Audio Language Models (CALM). These models instantiate a large Transformer backbone that produces a contextual embedding at every timestep. This sequential information then conditions an MLP that generates the next continuous frame of an audio VAE through consistency modeling. By avoiding lossy compression, CALM achieves higher quality at lower computational cost than their discrete counterpart. Experiments on speech and music demonstrate improved efficiency and fidelity over state-of-the-art discrete audio language models, facilitating lightweight, high-quality audio generation. Samples are available at https://continuous-audio-language-models.github.io

  • 5 authors

· Published on Sep 8, 2025

Continuous Audio Language Models

Audio Language Models (ALM) have emerged as the dominant paradigm for speech and music generation by representing audio as sequences of discrete tokens. Yet, unlike text tokens, which are invertible, audio tokens are extracted from lossy codecs with a limited bitrate. As a consequence, increasing audio quality requires generating more tokens, which imposes a trade-off between fidelity and computational cost. We address this issue by studying Continuous Audio Language Models (CALM). These models instantiate a large Transformer backbone that produces a contextual embedding at every timestep. This sequential information then conditions an MLP that generates the next continuous frame of an audio VAE through consistency modeling. By avoiding lossy compression, CALM achieves higher quality at lower computational cost than their discrete counterpart. Experiments on speech and music demonstrate improved efficiency and fidelity over state-of-the-art discrete audio language models, facilitating lightweight, high-quality audio generation. Samples are available at https://continuous-audio-language-models.github.io

Submitted by

Shengran

Submitted by

Shengran

Submitted by

taesiri

Kimi K2.5: Visual Agentic Intelligence

Kimi K2.5 is an open-source multimodal agentic model that enhances text and vision processing through joint optimization techniques and introduces Agent Swarm for parallel task execution.

Submitted by

taesiri

Kimi K2.5: Visual Agentic Intelligence

Kimi K2.5 is an open-source multimodal agentic model that enhances text and vision processing through joint optimization techniques and introduces Agent Swarm for parallel task execution.

Submitted by

zhongwenxu

Single-stream Policy Optimization

Single-stream Policy Optimization (SPO) improves policy-gradient training for Large Language Models by eliminating group-based issues and providing a stable, low-variance learning signal, leading to better performance and efficiency.

tencent Tencent · Published on Sep 16, 2025

Submitted by

zhongwenxu

Single-stream Policy Optimization

Single-stream Policy Optimization (SPO) improves policy-gradient training for Large Language Models by eliminating group-based issues and providing a stable, low-variance learning signal, leading to better performance and efficiency.

Submitted by

lovesnowbest

Submitted by

lovesnowbest