Use of Ultraviolet Blood Irradiation Against Viral Infections

15 min read Original article ↗
  • Welch D et al (2018) Far-UVC light: a new tool to control the spread of airborne-mediated microbial diseases. Sci Rep 8:2752

    PubMed  PubMed Central  Google Scholar 

  • Reed NG (2010) The history of ultraviolet germicidal irradiation for air disinfection. Public Health Rep 125:15–27

    PubMed  PubMed Central  Google Scholar 

  • Hollaender A, du Buy HG, Ingraham HS, Wheeler SM (1944) Control of air-borne microorganisms by ultraviolet floor irradiation. Science 99:130–131

    CAS  PubMed  Google Scholar 

  • Kowalski, W. J. Ultraviolet germicidal irradiation handbook: UVGI for air and surface Disinfection, (Springer, 2010).

  • Wells WF, Fair GM (1935) Viability of B. coli exposed to ultra-violet radiation in air. Science 82:280–281

    CAS  PubMed  Google Scholar 

  • Conner-Kerr TA, Sullivan PK, Gaillard J, Franklin ME, Jones RM (1998) The effects of ultraviolet radiation on antibiotic-resistant bacteria in vitro. Ostomy Wound Manage 44:50–56

    CAS  PubMed  Google Scholar 

  • Budowsky EI, Bresler SE, Friedman EA, Zheleznova NV (1981) Principles of selective inactivation of viral genome. I. UV-induced inactivation of influenza virus. Arch Virol 68:239–247

    CAS  PubMed  Google Scholar 

  • Setlow RB, Grist E, Thompson K, Woodhead AD (1993) Wavelengths effective in induction of malignant melanoma. Proc Natl Acad Sci USA 90:6666–6670

    CAS  PubMed  Google Scholar 

  • Balasubramanian D (2000) Ultraviolet radiation and cataract. J Ocul Pharmacol Ther 16:285–297

    CAS  PubMed  Google Scholar 

  • Buonanno M et al (2013) 207-nm UV light - a promising tool for safe low-cost reduction of surgical site infections. I: in vitro studies. PLoS ONE 8:e76968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buonanno M et al (2016) 207-nm UV light-a promising tool for safe low-cost reduction of surgical site infections. II: in-vivo safety studies. PLoS ONE 11:e0138418

    PubMed  PubMed Central  Google Scholar 

  • Buonanno M et al (2017) Germicidal efficacy and mammalian skin safety of 222-nm UV light. Radiat Res 187:483–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matafonova GG, Batoev VB, Astakhova SA, Gómez M, Christofi N (2008) Efficiency of KrCl excilamp (222 nm) for inactivation of bacteria in suspension. Lett Appl Microbiol 47:508–513

    CAS  PubMed  Google Scholar 

  • Sosnin EA, Avdeev SM, Kuznetzova LVA (2005) Lavrent’eva Bactericidal Barrier-Discharge KrBr Excilamp. Instruments and Experimental Techniques 48:663–666

    CAS  Google Scholar 

  • Wang D, Oppenländer T, El-Din MG, Bolton JR (2010) Comparison of the disinfection effects of vacuum-UV (VUV) and UV light on Bacillus subtilis spores in aqueous suspensions at 172, 222 and 254 nm. Photochem and Photobiol 86:176–181

    CAS  Google Scholar 

  • McDevitt JJ, Rudnick SN, Radonovich LJ (2012) Aerosol susceptibility of influenza virus to UV-C light. Appl Environ Microbiol 78:1666–1669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beck SE, Hull NM, Poepping C, Linden KG (2017) Wavelength-dependent damage to adenoviral proteins across the germicidal UV spectrum. Environ Sci Technol 52(1):223–229

    PubMed  Google Scholar 

  • Beck SE et al (2016) Comparison of UV-induced inactivation and RNA damage in MS2 phage across the germicidal UV spectrum. Appl Environ Microbiol 82:1468–1474

    CAS  PubMed Central  Google Scholar 

  • Hamblin, M.R. Ultraviolet irradiation of blood: “the cure that time forgot”?. In: Ahmad S. (eds) Ultraviolet light in human health, diseases and environment. Advances in Experimental Medicine and Biology, vol 996. (Springer, Cham, 2017).

  • Knott EK (1948) Development of ultraviolet blood irradiation. The American Journal of Surgery 76(2):165–171

    CAS  PubMed  Google Scholar 

  • Hancock VK, Knott EK (1934) Irradiated blood transfusion in the treatment of infections. Northwest Med 33:200

    Google Scholar 

  • Miley G, Christensen JA (1947) Ultraviolet blood irradiation therapy: further studies in acute infections. The American Journal of Surgery 73(4):486–493

    CAS  PubMed  Google Scholar 

  • Miley G (1944a) Ultraviolet blood irradiation therapy (Knott technic) in non-healing wounds. The American Journal of Surgery 65(3):368–372

    Google Scholar 

  • Miley GP (1946) Recovery from botulism coma following ultraviolet blood irradiation. The Review of gastroenterology 13:17

    CAS  PubMed  Google Scholar 

  • Miley GP, Seidel RE, Christensen JA (1946) Ultraviolet blood irradiation therapy of apparently intractable bronchial asthma. Arch Phys Med Rehabil 27:24–29

    CAS  PubMed  Google Scholar 

  • Miley G (1943a) The control of acute thrombophlebitis with ultraviolet blood irradiation therapy. The American Journal of Surgery 60(3):354–360

    Google Scholar 

  • Miley G (1944b) Efficacy of ultraviolet blood irradiation therapy in the control of staphylococcemias. The American Journal of Surgery 64(3):313–322

    Google Scholar 

  • Miley G (1944c) Ultraviolet blood irradiation therapy in acute poliomyelitis. Arch Phys Ther 25:651–656

    Google Scholar 

  • Miley G (1943b) Disappearance of hemolytic staphylococcus aureus septicemia following ultraviolet blood irradiation therapy: Knott technic. The American Journal of Surgery 62(2):241–245

    Google Scholar 

  • Miley G (1942a) The Knott technic of ultraviolet blood irradiation in acute pyogenic infections: a study of 103 cases with clinical observations on the effects of a new therapeutic agent. Anesthesiology: The Journal of the American Society of Anesthesiologists 3(4):485–485

    Google Scholar 

  • Miley G (1944d) Present status of ultraviolet blood irradiation (Knott technic). Arch Phys Ther 25:368–372

    Google Scholar 

  • Miley G (1943c) Ultraviolet blood irradiation therapy. Am J Bact 45:303

    Google Scholar 

  • Miley G (1942b) Ultraviolet blood irradiation therapy (Knott technic) in acute pyogenic infections. The American Journal of Surgery 57(3):493–507

    Google Scholar 

  • Miley GP, Rebbeck EW (1943) The Knott technic of ultraviolet blood irradiation as a control of infection in peritonitis. Rev Gastroenterol 10:1–26

    Google Scholar 

  • Miley GP, Seidel RE, Christensen JA (1943) Preliminary report of results observed in eighty cases of intractable bronchial asthma. Arch Phys Ther 533(24):42–53

    Google Scholar 

  • Barrett HA (1940) The irradiation of autotransfused blood by ultraviolet spectral energy: results of therapy in 110 cases. Med Clin North Am 24(3):723–732

    Google Scholar 

  • Barrett HA (1943) Five years’ experience with hemo-irradiation according to the Knott technic. The American Journal of Surgery 61(1):42–53

    Google Scholar 

  • Rebbeck EW, Walther RA (1942) Double septicemia following prostatectomy treated by the knott technic of ultraviolet blood irradiation: Case report. The American Journal of Surgery 57(3):536–538

    Google Scholar 

  • Rebbeck EW (1943a) Preoperative hemo-irradiations. The American Journal of Surgery 61(2):259–265

    Google Scholar 

  • Rebbeck EW (1941) Ultraviolet irradiation of autotransfused blood in the treatment of puerperal sepsis. TheAmerican Journal of Surgery 54(3):691–700

    Google Scholar 

  • Rebbeck EW (1942) Ultraviolet irradiation of autotransfused blood in the treatment of postabortional sepsis. The American Journal of Surgery 55(3):476–486

    Google Scholar 

  • Rebbeck EW (1943b) Ultraviolet irradiation of blood in the treatment of Escherichia coli septicemia. Archives of Physical Therapy 24:158–167

    Google Scholar 

  • Olney RC (1946) Ultraviolet blood irradiation in biliary disease: Knott method. The American Journal of Surgery 72(2):235–237

    CAS  PubMed  Google Scholar 

  • Olney RC (1947) Ultraviolet blood irradiation treatment of pelvic cellulitis: Knott method. The American Journal of Surgery 74(4):440–443

    CAS  PubMed  Google Scholar 

  • Olney RC (1955) Treatment of viral hepatitis with the Knott technic of blood irradiation. Am J Surg 90(3):402–409

    CAS  PubMed  Google Scholar 

  • Kabat, I. A., Sysa, J., Zakrzewska, I., & Leyko, W. Effect of UV-irradiation of shifts of energy-rich phosphate compounds: ADP, ATP and AXP in human red blood cells represented by a trigonometrical polynomial. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe B: Hygiene, praventive Medizin, 162(3–4), 393–401 (1976).

  • Vasil’eva ZF, Samoĭlova KA, Shtil’bans VI, Obolenskaia KD, Vitiuk NG (1991) Changes of immunosorption properties in the blood and its components at various times after UV-irradiation. Gematol Transfuziol 36(5):26–27

    CAS  PubMed  Google Scholar 

  • Samoĭlova KA, Snopov SA, Belisheva NK, Kukuĭ LM, Ganelina IE (1987) Functional and structural changes in the surface of human erythrocytes after irradiation by different wave lengths of UV rays. III. The immediate effect of the autotransfusion of UV-irradiated blood. Tsitologiia 29(7):810–817

    PubMed  Google Scholar 

  • Snopov SA, Aritsishevskaia RA, Samoĭlova KA, Marchenko AV, Dutkevich IG (1989) Functional and structural changes in the surface of human erythrocytes following irradiation with ultraviolet rays of various wave lengths. V. Modification of the glycocalyx in autotransfusions of UV-irradiated blood. Tsitologiia 31(6):696–705

    CAS  PubMed  Google Scholar 

  • Ichiki H, Sakurada H, Kamo N, Takahashi TA, Sekiguchi S (1994) Generation of active oxygens, cell deformation and membrane potential changes upon UV-B irradiation in human blood cells. Biological and Pharmaceutical Bulletin 17(8):1065–1069

    CAS  PubMed  Google Scholar 

  • Savage JE, Theron AJ, Anderson R (1993) Activation of neutrophil membrane-associated oxidative metabolism by ultraviolet radiation. Journal of investigative dermatology 101(4):532–536

    CAS  Google Scholar 

  • Ivanov EM, Kapshienko IN, Tril NM (1989) Effect of the UV irradiation of autologous blood on the humoral link in the immune response of patients with chronic inflammatory processes. Vopr Kurortol Fizioter Lech Fiz Kult 1:45–47

    Google Scholar 

  • Artiukhov VF, Gusinskaia VV, Mikhileva EA (2005) Level of nitric oxide and tumor necrosis factor-alpha production by human blood neutrophils under UV-irradiation. Radiats Biol Radioecol 45(5):576–580

    CAS  PubMed  Google Scholar 

  • Zor’kina AV, Inchina VI, Kostin I (1996) Effect of UV-irradiation of blood on the course of adaptation to conditions of hypodynamia. Patologicheskaia fiziologiia i eksperimental’naia terapiia 2:22–24

    Google Scholar 

  • Deeg HJ (1988) Ultraviolet irradiation in transplantation biology. Manipulation of immunity and immunogenicity Transplantation 45(5):845–851

    CAS  PubMed  Google Scholar 

  • Arlett CF et al (1993) Hypersensitivity of human lymphocytes to UV-B and solar irradiation. Can Res 53(3):609–614

    CAS  Google Scholar 

  • Teunissbn M, Sylva-Stehnland RMR, Bos JD (1993) Effect of low-dose ultraviolet-B radiation on the function of human T lymphocytes in vitro. Clin Exp Immunol 94(1):208–213

    Google Scholar 

  • Schieven GL, Ledbetter JA (1993) Ultraviolet radiation induces differential calcium signals in human peripheral blood lymphocyte subsets. Journal of immunotherapy with emphasis on tumor immunology: official journal of the Society for Biological Therapy 14(3):221–225

    CAS  Google Scholar 

  • Spielberg H, June CH, Blair OC, Nystrom-Rosander C, Cereb N, Deeg H (1991) JUV irradiation of lymphocytes triggers an increase in intracellular Ca2+ and prevents lectin-stimulated Ca2+ mobilization: evidence for UV-and nifedipine-sensitive Ca2+ channels. Exp Hematol 19(8):742–748

    CAS  PubMed  Google Scholar 

  • Pamphilon DH, Corbin SA, Saunders J, Tandy NP (1989) Applications of ultraviolet light in the preparation of platelet concentrates. Transfusion 29(5):379–383

    CAS  PubMed  Google Scholar 

  • Lindahl-Kiessling K, Säfwenberg J (1971) Inability of UV-irradiated lymphocytes to stimulate allogeneic cells in mixed lymphocyte culture. Int Arch Allergy Immunol 41(5):670–678

    CAS  Google Scholar 

  • Slater LM, Murray S, Liu J, Hudelson B (1980) Dissimilar effects of ultraviolet light on HLA-Dand HLA-DR antigens. Tissue Antigens 15(5):431–435

    CAS  PubMed  Google Scholar 

  • Aprile J, Deeg HJ (1986) Ultraviolet irradiation of canine dendritic cells prevents mitogen-induced cluster formation and lymphocyte proliferation. Transplantation 42(6):653–660

    CAS  PubMed  Google Scholar 

  • Kovacs E, Weber W, Müller H (1984) Age-related variation in the DNA-repair synthesis after UV-C irradiation in unstimulated lymphocytes of healthy blood donors. Mutation Research/DNA Repair Reports 131(5–6):231–237

    CAS  Google Scholar 

  • Genter EI, Zhestianikov VD, Mikhel’son VM, Prokof’eva VV (1984) DNA repair in the UV irradiation of human peripheral blood lymphocytes (healthy donors and xeroderma pigmentosum patients) in relation to the dedifferentiation process in phytohemagglutinin exposure. Tsitologiia 26(5):599–604

    CAS  PubMed  Google Scholar 

  • Genter EI, Mikhel’son VM, Zhestianikov VD (1989) The modifying action of methylmethane sulfonate on unscheduled DNA synthesis in the UV irradiation of human peripheral blood lymphocytes. Radiobiologiia 29(4):562–564

    CAS  PubMed  Google Scholar 

  • Volgareva EV, Volgarev AP, Samoĭlova KA (1990) The effect of UV irradiation and of UV-irradiated autologous blood on the functional state of human peripheral blood lymphocytes. Tsitologiia 32(12):1217–1224

    CAS  PubMed  Google Scholar 

  • Deeg HJ, Aprile J, Graham TC, Appelbaum FR, Storb R (1986) Ultraviolet irradiation of blood prevents transfusion-induced sensitization and marrow graft rejection in dogs. Blood 67(2):537–539

    CAS  PubMed  Google Scholar 

  • Oluwole SF, Iga C, Lau H, Hardy MA (1985) Prolongation of rat heart allografts by donor-specific blood transfusion treated with ultraviolet irradiation. The Journal of heart transplantation 4(4):385–389

    CAS  PubMed  Google Scholar 

  • Vasil’eva ZF, Shtil’bans VI, Samoĭlova KS, Obolenskaia KD (1989) The activation of the immunosorptive properties of blood during its UV irradiation at therapeutic doses. Biulleten’eksperimental’noi biologii i meditsiny 108(12):689–691

    CAS  Google Scholar 

  • Green MH, Waugh AP, Lowe JE, Harcourt SA, Cole J, Arlett CF (1994) Effect of deoxyribonucleosides on the hypersensitivity of human peripheral blood lymphocytes to UV-B and UV-C irradiation. Mutation Research/DNA Repair 315(1):25–32

    CAS  Google Scholar 

  • Samoĭlova KA, Obolenskaia KD, Freĭdlin IS (1987) Changes in the leukocyte phagocytic activity of donor blood after its UV irradiation. II. Simulation of the effect of the autotransfusion of UV-irradiated blood. Tsitologiia 29(9):1048–1055

    PubMed  Google Scholar 

  • Obolenskaia KD, Freĭdlin IS, Samoĭlova KA (1987) Changes in the leukocyte phagocytic activity of donor blood after its UV irradiation. I. Its relation to the irradiation dose and initial level of phagocytic activity. Tsitologiia 29(8):948–954

    CAS  PubMed  Google Scholar 

  • Simon JC, Tigelaar RE, Bergstresser PR, Edelbaum D, Cruz PD (1991) Ultraviolet B radiation converts Langerhans cells from immunogenic to tolerogenic antigen-presenting cells. Induction of specific clonal anergy in CD4+ T helper 1 cells. TheJournal of Immunology 146(2):485–491

    CAS  Google Scholar 

  • Pamphilon DH et al (1990) Platelet concentrates irradiated with ultraviolet light retain satisfactory in vitro storage characteristics and in vivo survival. Br J Haematol 75(2):240–244

    CAS  PubMed  Google Scholar 

  • Fiebig E, Lane TA (1994) Effect of storage and ultraviolet B irradiation onCD14-bearing antigen-presenting cells (monocytes) in platelet concentrates. Transfusion 34(10):846–851

    CAS  PubMed  Google Scholar 

  • Kahn RA, Duffy BF, Rodey GG (1985) Ultraviolet irradiation of platelet concentrate abrogates lymphocyte activation without affecting platelet function in vitro. Transfusion 25(6):547–550

    CAS  PubMed  Google Scholar 

  • Andreu G et al (1992) The role of UV radiation in the prevention of human leukocyte antigen alloimmunization. Transfus Med Rev 6(3):212–224

    CAS  PubMed  Google Scholar 

  • Tandy NP, Pamphilon DH (1991) Platelet transfusions irradiated with ultraviolet-B light may have a role in reducing recipient alloimmunization. Blood coagulation & fibrinolysis: an international journal in haemostasis and thrombosis 2(2):383–388

    CAS  Google Scholar 

  • Roshchupkin DI, Murina MA (1998) Free-radical and cyclooxygenase-catalyzed lipid peroxidation in membranes of blood cells under UV irradiation. Membrane & cell biology 12(2):279–286

    CAS  Google Scholar 

  • Görög P (1991) Activation of human blood monocytes by oxidized polyunsaturated fatty acids: a possible mechanism for the generation of lipid peroxides in the circulation. Int J Exp Pathol 72(2):227

    PubMed  PubMed Central  Google Scholar 

  • Salmon S, Maziere JC, Santus R, Morliere P, Bouchemal N (1990) UVB-induced photoperoxidation of lipids of human low and high density lipoproteins. A possible role of tryptophan residues. Photochem Photobiol 52(3):541–545

    CAS  PubMed  Google Scholar 

  • Salmon S, Haigle J, Bazin M, Santus R, Maziere JC, Dubertret L (1996) Alteration of lipoproteins of suction blister fluid by UV radiation. J Photochem Photobiol, B 33(3):233–238

    CAS  Google Scholar 

  • Artyukhov VG, Iskusnykh AY, Basharina OV, Konstantinova TS (2005) Effect of UV irradiation on functional activity of donor blood neutrophils. Bull Exp Biol Med 139(3):313–315

    CAS  PubMed  Google Scholar 

  • Dong Y, Shou T, Zhou Y, Jiang S, Hua X (2000) Ultraviolet blood irradiation and oxygenation affects free radicals and antioxidase after rabbit spinal cord injury. Chin Med J 113(11):991–995

    CAS  PubMed  Google Scholar 

  • Calabrese EJ, Dhawan G, Kapoor R, Iavicoli I, Calabrese V (2016) HORMESIS: a fundamental concept with widespread biological and biomedical applications. Gerontology 62(5):530–535

    CAS  PubMed  Google Scholar 

  • Calabrese EJ (2014) Hormesis: from mainstream to therapy. Journal of cell communication and signaling 8(4):289–291

    PubMed  PubMed Central  Google Scholar 

  • Wu X, Hu X, Hamblin MR (2016) Ultraviolet blood irradiation: is it time to remember “the cure that time forgot”? J Photochem Photobiol, B 157:89–96

    CAS  Google Scholar 

  • Edelson RL (1991) Photopheresis: a clinically relevant immunobiologic response modifier. Ann N Y Acad Sci 636:154–164

    CAS  PubMed  Google Scholar 

  • Edelson R (1989) LPhotopheresis: a new therapeutic concept. The Yale journal of biology and medicine 62(6):565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edelson R et al (1987) Treatment of cutaneous T-cell lymphoma by extracorporeal photochemotherapy. N Engl J Med 316(6):297–303

    CAS  PubMed  Google Scholar 

  • Edelson RL (2001) Cutaneous T cell lymphoma: the helping hand of dendritic cells. Ann N Y Acad Sci 941(1):1–11

    CAS  PubMed  Google Scholar 

  • Tuck A, Smith S, Larcom L (2000) Chronic lymphocytic leukemia lymphocytes lack the capacity to repair UVC-induced lesions. Mutation Research/DNA Repair 459:73–80

    CAS  Google Scholar 

  • Kuenstner JT, Mukherjee S, Weg S, Landry T, Petrie T (2015) The treatment of infectious disease with a medical device: results of a clinical trial of ultraviolet blood irradiation (UVBI) in patients with hepatitis C infection. International Journal of Infectious Diseases 37:58–63

    PubMed  Google Scholar 

  • Kuenstner JT, Mukherjee S, Schafer Z, Kuenstner W, Petrie T (2019) A controlled clinical trial of ultraviolet blood irradiation (UVBI) for hepatitis C infection. Cogent Medicine 6(1):1614286

    Google Scholar 

  • Zhadnov VZ, Mishanov RF, Kuznetsov AA, Shprykov AS, Ryzhakova TM (1995) Effectiveness of chemotherapy in combination with electrophoresis and ultraviolet irradiation of blood in newly diagnosed patients with destructive pulmonary tuberculosis. Problemy Tuberkuleza 3:20–22

    Google Scholar 

  • Shurygin AA (2009) The efficiency of ultraviolet autologous blood irradiation used in the complex therapy of infiltrative pulmonary tuberculosis in children and adolescents. Probl Tuberk Bolezn Legk 9:20–23

    Google Scholar 

  • Darwin KH, Nathan CF (2005) Role for nucleotide excision repair in virulence of Mycobacterium tuberculosis. Infect Immun 73:4581–4610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuenstner JT, Chamberlin W, Naser S, Zhang HY, Wang S, Zhou WX, Duan J (2015) Resolution of Crohn’s disease and complex regional pain syndrome following treatment of paratuberculosis. World Journal of Gastroenterology: WJG 21:4048–4062

    CAS  PubMed  Google Scholar 

  • Gonzalez AL, Berger CL, Remington J, Girardi M, Tigelaar RE, Edelson RL (2014) Integrin-driven monocyte to dendritic cell conversion in modified extracorporeal photochemotherapy. Clin Exp Immunol 175(3):449–457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edelson RL (2014) Mechanistic insights into extracorporeal photochemotherapy: efficient induction of monocyte-to-dendritic cell maturation. Transfus Apheres Sci 50(3):322–329

    Google Scholar 

  • Gottlieb SL, Wolfe JT, Fox FE, DeNardo BJ, Macey WH, Bromley PG, Rook AH (1996) Treatment of cutaneous T-cell lymphoma with extracorporeal photopheresis monotherapy and in combination with recombinant interferon alfa: a 10-year experience at a single institution. J Am Acad Dermatol 35(6):946–957

    CAS  PubMed  Google Scholar 

  • Bladon J, Taylor PC (1999) Extracorporeal photopheresis induces apoptosis in the lymphocytes of cutaneous T-cell lymphoma and graft-versus-host disease patients. Br J Haematol 107(4):707–711

    CAS  PubMed  Google Scholar 

  • Russell‐Jones R (2000) Extracorporeal photopheresis in cutaneous T‐cell lymphoma. Inconsistent data underline the need for randomized studies. Br J Dermatol 142(1):16–21

    PubMed  Google Scholar 

  • Scarisbrick JJ, Taylor P, Holtick U, Makar Y, Douglas K, Berlin G, Photopheresis Expert Group (2008) UK consensus statement on the use of extracorporeal photopheresis for treatment of cutaneous T‐cell lymphoma and chronic graft‐versus‐host disease. Br J Dermatol 158(4):659–678

    CAS  PubMed  Google Scholar