References
Akins, K. (1993). What is it like to be boring and myopic? In Dennett and his critics. Blackwell.
Allen, C. (2017). On (not) defining cognition. Synthese, 194, 4233–4249. https://doi.org/10.1007/s11229-017-1454-4
Anderson, E. D., & Barbey, A. K. (2023). Investigating cognitive neuroscience theories of human intelligence: A connectome-based predictive modeling approach. Human Brain Mapping, 44(4), 1647–1665. https://doi.org/10.1002/hbm.26164
Anderson, M. L., & Champion, H. (2022). Some dilemmas for an account of neural representation: A reply to Poldrack. Synthese, 200, 169. https://doi.org/10.1007/s11229-022-03505-4
Awad, A., Pang, W., & Lusseau, D., et al. (2023). A survey on physarum polycephalum intelligent foraging behaviour and bio-inspired applications. Artificial Intelligence Review, 56, 1–26. https://doi.org/10.1007/s10462-021-10112-1
Baysan, U. R. E. (2021). Synthese, 199, 2773–2791. https://doi.org/10.1007/s11229-020-02911-w
Beck, J. (2017). Do nonhuman animals have a language of thought? The Routledge Handbook of Philosophy of Animal Minds, 46–55
Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big?
In Proceedings of the 2021 ACM conference on fairness, accountability, and transparency (pp. 610–623)Bender, E. M., & Koller, A. (2020). Climbing towards nlu: On meaning, form, and understanding in the age of data. In Proceedings of the 58th annual meeting of the association for computational linguistics (pp. 5185–5198).
Binet, A. (1905). Methodes nouvelles pour le diagnostique du niveau intellectual des anormaux [New methods for the diagnosis of the intellectual levels of subnormals]. Studies in Individual Differences, the Search for Intelligence, 90–96.
Block, N. (1981). Psychologism and behaviorism. The Philosophical Review, 90(1), 5–43.
Boring, E. G. (1961). Intelligence as the tests test it. In J. J. Jenkins & D. G. Paterson (Eds.), Studies in individual differences: The search for intelligence (pp. 210–214). Appleton-Century-Crofts. https://doi.org/10.1037/11491-017
Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(1–3), 139–159.
Brooks, R. A. (2018). Intelligence without reason. In The artificial life route to artificial intelligence (pp. 25–81). Routledge.
Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E.Zhang, Y. … Zhang, Y. (2023). Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712.
Buckner, C. (2023). Black boxes or unflattering mirrors? Comparative bias in the science of machine behaviour. British Journal for the Philosophy of Science, 74(3), 681–712.
Calvo, P., Gagliano, M., Souza, G. M., & Trewavas, A. (2020). Plants are intelligent, here’s how. Annals of Botany, 125(1), 11–28. https://doi.org/10.1093/aob/mcz155
Cao, R. (2022). Putting representations to use. Synthese, 200, 151. https://doi.org/10.1007/s11229-022-03522-3
Chemero, A. (2009). Radical embodied cognitive science. Bradford.
Chollet, F. (2019). On the measure of intelligence. arXiv preprint arXiv:1911.01547.
Chomsky, N. (2006). Language and mind. Cambridge University Press.
Clark, A., & Toribio, J. (1994). Doing without representing? Synthese, 101, 401–431. https://doi.org/10.1007/BF01063896
Coelho Mollo, D. (2024). Intelligent behaviour. Erkenn, 89, 705–721. https://doi.org/10.1007/s10670-022-00552-8
Coelho Mollo, D. (2025). AI-as-exploration: Navigating intelligence space. THEORIA an International Journal for Theory History and Foundations of Science. https://doi.org/10.1387/theoria.25837
Constant, A., Clark, A., & Friston, K. J. (2021). Representation wars: Enacting an armistice through active inference. Frontiers in Psychology, 11, 598733. https://doi.org/10.3389/fpsyg.2020.598733
Dennett, D. C. (1989). The intentional stance. MIT press.
Downey, A. (2018). Predictive processing and the representation wars: A victory for the eliminativist (via fictionalism). Synthese, 195, 5115–5139. https://doi.org/10.1007/s11229-017-1442-8
Dretske, F. (1991). Explaining behavior: Reasons in a world of causes. MIT press.
Dretske, F. (1993). Can intelligence be artificial? Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 71(2), 201–216.
Egan, F. (2018). The nature and function of content in computational models. In The Routledge handbook of the computational mind (pp. 247–258). Routledge.
Egan, F. (2020). A deflationary account of mental representation. In J. Smortchkova, K. Dołęga, & T. Schlicht (Eds.), What are mental representations?. Oxford University Press.
Facchin, M. (2023). Why can’t we say what cognition is (at least for the time being). Philosophy and the Mind Sciences, 4. https://doi.org/10.33735/phimisci.2023.9664
Facchin, M. (2024). Maps, simulations, spaces and dynamics: On distinguishing types of structural representations. Erkenn, 90, 2743–2764. https://doi.org/10.1007/s10670-024-00831-6
Favela, L. H. (2023). The ecological brain: Unifying the sciences of brain, body, and environment. Routledge.
Favela, L. H., & Amon, M. J. (2023). Reframing cognitive science as a complexity science. Cognitive Science, 47(4), e13280. https://doi.org/10.1111/cogs.13280
Firzlaff, U., Schuchmann, M., Grunwald, J. E., Schuller, G., & Wiegrebe, L. (2007). Object-oriented echo perception and cortical representation in echolocating bats. PLoS Biology, 5(5), e100.
Fodor, J. A. (1975). The language of thought (Vol. 5). Harvard university press.
Furber, S. B., Galluppi, F., Temple, S., & Plana, L. A. (2014). The spinnaker project. Proceedings of the IEEE, 102(5), 652–665. https://doi.org/10.1109/JPROC.2014.2304638
Gardner, H. (2011). Frames of mind: The theory of multiple intelligences. Basic books.
Gładziejewski, P., & Miłkowski, M. (2017). Structural representations: Causally relevant and different from detectors. Biology & Philosophy, 32(3), 337–355. https://doi.org/10.1007/s10539-017-9562-6
Godfrey-Smith, P. (2016). Other minds: The octopus, the sea, and the deep origins of consciousness. Farrar, Straus and Giroux.
Gottfredson, L. S. (1997). Why g matters: The complexity of everyday life. Intelligence, 24(1), 79–132.
Grzankowski, A. (2024). Real sparks of artificial intelligence and the importance of inner interpretability. Inquiry, 1–27. https://doi.org/10.1080/0020174X.2023.2296468
Haier, R. J., Colom, R., & Hunt, E. (2023). The science of human intelligence. Cambridge University Press.
Haier, R. J., Siegel, B. V.Jr, Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J.Buchsbaum, M. S. … Buchsbaum, M. S. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12(2), 199–217.
Hofmann, F., & Schulte, P. (2014). The structuring causes of behavior: Has dretske saved mental causation? Acta Anal, 29, 267–284. https://doi.org/10.1007/s12136-014-0218-8
Jeffery, K. J., Jovalekic, A., Verriotis, M., & Hayman, R. (2013). Navigating in a three-dimensional world. Behavioral and Brain Sciences, 36(5), 523–543.
Kieval, P. H. (2022). Mapping representational mechanisms with deep neural networks. Synthese, 200, 196. https://doi.org/10.1007/s11229-022-03694-y
Kim, J. (2005). Physicalism or something near enough. Princeton University Press.
Kováč, L. (2010). The 20 W sleep-walkers. EMBO Reports, 11(1), 2–2.
Legg, S., & Hutter, M. (2007a). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444. https://doi.org/10.1007/s11023-007-9079-x
Legg, S., & Hutter, M. (2007b). A collection of definitions of intelligence. Frontiers in Artificial Intelligence and Applications, 157, 17.
Li, K., Hopkins, A. K., Bau, D., Viégas, F., Pfister, H., & Wattenberg, M. (2023). Emergent world representations: Exploring a sequence model trained on a synthetic task. ICLR
Maslej, N., Fattorini, L., Perrault, R., Parli, V., Reuel, A., Brynjolfsson, E.Clark, J, … Clark, J. (2024). Artificial intelligence index report 2024. arXiv preprint arXiv:2405.19522
Millière, R., & Rathkopf, C. (2024). Anthropocentric bias and the possibility of artificial cognition. In ICML 2024 Workshop on LLMs and Cognition.
Montemayor, C. (2023). The prospect of a humanitarian artificial intelligence: Agency and value alignment. Bloomsbury Academic.
Moravec, H. (1988). Mind children: The future of robot and human intelligence. Harvard University Press.
Mustafa, N., Ahearn, T. S., Waiter, G. D., Murray, A. D., Whalley, L. J., & Staff, R. T. (2012). Brain structural complexity and life course cognitive change. Neuroimage, 61(3), 694–701. https://doi.org/10.1016/j.neuroimage.2012.03.088
Nirshberg, G. (2023). Structural resemblance and the causal role of content. Erkenntnis, 1–20. https://doi.org/10.1007/s10670-023-00699-y
Opie, J., & O’Brien, G. (2004). Notes toward a structuralist theory of mental representation. In H. Clapin, P. Staines, & P. Slezak (Eds.), Representation in mind: New approaches to mental representation (pp. 1–20). Elsevier.
Parr, T., Pezzulo, G., & Friston, K. J. (2022). Active inference: The free energy principle in mind, brain, and behavior. MIT Press.
Poldrack, R. A. (2021). The physics of representation. Synthese, 199, 1307–1325. https://doi.org/10.1007/s11229-020-02793-y
Putnam, H. (1988). Much ado about not very much. Daedalus, 269–281.
Raleigh, T., & Knoks, A. (2025). Clarifying the opacity of neural networks. Minds and Machines, 35, 43. https://doi.org/10.1007/s11023-025-09745-w
Ramsey, W. (2017). Must cognition be representational? Synthese, 194(11), 4197–4214. https://doi.org/10.1007/s11229-014-0644-6
Russell, S. (2016). Rationality and intelligence: A brief update. In Fundamental issues of artificial intelligence (pp. 7–28). Springer International Publishing.
Russell, S. (2019). Human compatible: AI and the problem of control. Penguin UK.
Salay, N. (2023). An unconventional look at ai: Why Today’s machine learning systems are not intelligent. Unconventional Computing, Arts, Philosophy, 523–534.
Saxe, G. N., Calderone, D., & Morales, L. J. (2018). Brain entropy and human intelligence: A resting-state fMRI study. PLoS One, 13(2), e0191582.
Schellenberg, S. (2018). The unity of perception: Content, consciousness, evidence. Oxford University Press.
Schwartzman, A. E., Gold, D., Andres, D., Arbuckle, T. Y., & Chaikelson, J. (1987). Stability of intelligence: A 40-year follow-up. Canadian Journal of psychology/Revue Canadienne de Psychologie, 41(2), 244.
Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(3), 417–424.
Searle, J. R. (2002). Consciousness and language. Cambridge University Press.
Shea, N. (2018). Representation in cognitive science (p. 304). Oxford University Press.
Sternberg, R. J. (2020). The augmented theory of successful intelligence. In R. J. Sternberg (Ed.), The Cambridge handbook of intelligence (2nd ed., pp. 679–708). Cambridge University Press. https://doi.org/10.1017/9781108770422.029
Stoljar, D., & Zhang, Z. V. (2024). Why ChatGPT doesn’t think: An argument from rationality. Inquiry, 1–29. https://doi.org/10.1080/0020174X.2024.2427061
Summerfield, C. (2023). Natural General intelligence: How understanding the brain can help us build AI. Oxford university press.
Thagard, P. (2024). Bots and beasts: What makes machines, animals, and people smart?. MIT Press.
Thaler, L., Arnott, S. R., & Goodale, M. A. (2011). Neural correlates of natural human echolocation in early and late blind echolocation experts. PLoS One, 6(5), e20162.
Titus, L. M. (2024). Does ChatGPT have semantic understanding? A problem with the statistics-of-occurrence strategy. Cognitive Systems Research, 83, 101174. https://doi.org/10.1016/j.cogsys.2023.101174
Treffert, D. A., & Christensen, D. D. (2005). Inside the mind of a savant. Scientific American, 293(6), 108–113.
Turing, A. (2004 [1948]). Intelligent machinery. In B. J. Copeland (Ed.), The essential turing: The ideas that gave birth to the computer age (pp. 395–432). Oxford University Press.
Turing, A. M. (2004 [1950]). Computing machinery and intelligence. In B. J. Copeland (Ed.), The essential turing: The ideas that gave birth to the computer age (pp. 433–464). Oxford University Press.
Williams, D. (2018). Predictive processing and the representation wars. Minds and Machines, 28(1), 141–172. https://doi.org/10.1007/s11023-017-9441-6
Xu, B., & Poo, M. M. (2023). Large language models and brain-inspired general intelligence. National Science Review, 10(10), nwad267.
Yang, E., Zhang, X., Shang, Y., & Zhang, G. (2025). High-entropy advantage in neural networks’ generalizability. arXiv preprint arXiv:2503.13145.