Beyond representation: rethinking intelligence in the age of LLMs

9 min read Original article ↗

References

  • Akins, K. (1993). What is it like to be boring and myopic? In Dennett and his critics. Blackwell.

    Google Scholar 

  • Allen, C. (2017). On (not) defining cognition. Synthese, 194, 4233–4249. https://doi.org/10.1007/s11229-017-1454-4

    Article  Google Scholar 

  • Anderson, E. D., & Barbey, A. K. (2023). Investigating cognitive neuroscience theories of human intelligence: A connectome-based predictive modeling approach. Human Brain Mapping, 44(4), 1647–1665. https://doi.org/10.1002/hbm.26164

    Article  Google Scholar 

  • Anderson, M. L., & Champion, H. (2022). Some dilemmas for an account of neural representation: A reply to Poldrack. Synthese, 200, 169. https://doi.org/10.1007/s11229-022-03505-4

    Article  Google Scholar 

  • Awad, A., Pang, W., & Lusseau, D., et al. (2023). A survey on physarum polycephalum intelligent foraging behaviour and bio-inspired applications. Artificial Intelligence Review, 56, 1–26. https://doi.org/10.1007/s10462-021-10112-1

    Article  Google Scholar 

  • Baysan, U. R. E. (2021). Synthese, 199, 2773–2791. https://doi.org/10.1007/s11229-020-02911-w

    Article  Google Scholar 

  • Beck, J. (2017). Do nonhuman animals have a language of thought? The Routledge Handbook of Philosophy of Animal Minds, 46–55

  • Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM conference on fairness, accountability, and transparency (pp. 610–623)

  • Bender, E. M., & Koller, A. (2020). Climbing towards nlu: On meaning, form, and understanding in the age of data. In Proceedings of the 58th annual meeting of the association for computational linguistics (pp. 5185–5198).

  • Binet, A. (1905). Methodes nouvelles pour le diagnostique du niveau intellectual des anormaux [New methods for the diagnosis of the intellectual levels of subnormals]. Studies in Individual Differences, the Search for Intelligence, 90–96.

  • Block, N. (1981). Psychologism and behaviorism. The Philosophical Review, 90(1), 5–43.

    Article  Google Scholar 

  • Boring, E. G. (1961). Intelligence as the tests test it. In J. J. Jenkins & D. G. Paterson (Eds.), Studies in individual differences: The search for intelligence (pp. 210–214). Appleton-Century-Crofts. https://doi.org/10.1037/11491-017

    Chapter  Google Scholar 

  • Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(1–3), 139–159.

    Article  Google Scholar 

  • Brooks, R. A. (2018). Intelligence without reason. In The artificial life route to artificial intelligence (pp. 25–81). Routledge.

    Chapter  Google Scholar 

  • Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E.Zhang, Y. … Zhang, Y. (2023). Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712.

  • Buckner, C. (2023). Black boxes or unflattering mirrors? Comparative bias in the science of machine behaviour. British Journal for the Philosophy of Science, 74(3), 681–712.

    Article  Google Scholar 

  • Calvo, P., Gagliano, M., Souza, G. M., & Trewavas, A. (2020). Plants are intelligent, here’s how. Annals of Botany, 125(1), 11–28. https://doi.org/10.1093/aob/mcz155

    Article  Google Scholar 

  • Cao, R. (2022). Putting representations to use. Synthese, 200, 151. https://doi.org/10.1007/s11229-022-03522-3

    Article  Google Scholar 

  • Chemero, A. (2009). Radical embodied cognitive science. Bradford.

  • Chollet, F. (2019). On the measure of intelligence. arXiv preprint arXiv:1911.01547.

  • Chomsky, N. (2006). Language and mind. Cambridge University Press.

    Book  Google Scholar 

  • Clark, A., & Toribio, J. (1994). Doing without representing? Synthese, 101, 401–431. https://doi.org/10.1007/BF01063896

    Article  Google Scholar 

  • Coelho Mollo, D. (2024). Intelligent behaviour. Erkenn, 89, 705–721. https://doi.org/10.1007/s10670-022-00552-8

    Article  Google Scholar 

  • Coelho Mollo, D. (2025). AI-as-exploration: Navigating intelligence space. THEORIA an International Journal for Theory History and Foundations of Science. https://doi.org/10.1387/theoria.25837

    Article  Google Scholar 

  • Constant, A., Clark, A., & Friston, K. J. (2021). Representation wars: Enacting an armistice through active inference. Frontiers in Psychology, 11, 598733. https://doi.org/10.3389/fpsyg.2020.598733

    Article  Google Scholar 

  • Dennett, D. C. (1989). The intentional stance. MIT press.

    Google Scholar 

  • Downey, A. (2018). Predictive processing and the representation wars: A victory for the eliminativist (via fictionalism). Synthese, 195, 5115–5139. https://doi.org/10.1007/s11229-017-1442-8

    Article  Google Scholar 

  • Dretske, F. (1991). Explaining behavior: Reasons in a world of causes. MIT press.

    Google Scholar 

  • Dretske, F. (1993). Can intelligence be artificial? Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 71(2), 201–216.

    Article  Google Scholar 

  • Egan, F. (2018). The nature and function of content in computational models. In The Routledge handbook of the computational mind (pp. 247–258). Routledge.

    Chapter  Google Scholar 

  • Egan, F. (2020). A deflationary account of mental representation. In J. Smortchkova, K. Dołęga, & T. Schlicht (Eds.), What are mental representations?. Oxford University Press.

  • Facchin, M. (2023). Why can’t we say what cognition is (at least for the time being). Philosophy and the Mind Sciences, 4. https://doi.org/10.33735/phimisci.2023.9664

  • Facchin, M. (2024). Maps, simulations, spaces and dynamics: On distinguishing types of structural representations. Erkenn, 90, 2743–2764. https://doi.org/10.1007/s10670-024-00831-6

    Article  Google Scholar 

  • Favela, L. H. (2023). The ecological brain: Unifying the sciences of brain, body, and environment. Routledge.

    Book  Google Scholar 

  • Favela, L. H., & Amon, M. J. (2023). Reframing cognitive science as a complexity science. Cognitive Science, 47(4), e13280. https://doi.org/10.1111/cogs.13280

    Article  Google Scholar 

  • Firzlaff, U., Schuchmann, M., Grunwald, J. E., Schuller, G., & Wiegrebe, L. (2007). Object-oriented echo perception and cortical representation in echolocating bats. PLoS Biology, 5(5), e100.

    Article  Google Scholar 

  • Fodor, J. A. (1975). The language of thought (Vol. 5). Harvard university press.

    Google Scholar 

  • Furber, S. B., Galluppi, F., Temple, S., & Plana, L. A. (2014). The spinnaker project. Proceedings of the IEEE, 102(5), 652–665. https://doi.org/10.1109/JPROC.2014.2304638

    Article  Google Scholar 

  • Gardner, H. (2011). Frames of mind: The theory of multiple intelligences. Basic books.

    Google Scholar 

  • Gładziejewski, P., & Miłkowski, M. (2017). Structural representations: Causally relevant and different from detectors. Biology & Philosophy, 32(3), 337–355. https://doi.org/10.1007/s10539-017-9562-6

    Article  Google Scholar 

  • Godfrey-Smith, P. (2016). Other minds: The octopus, the sea, and the deep origins of consciousness. Farrar, Straus and Giroux.

    Google Scholar 

  • Gottfredson, L. S. (1997). Why g matters: The complexity of everyday life. Intelligence, 24(1), 79–132.

    Article  Google Scholar 

  • Grzankowski, A. (2024). Real sparks of artificial intelligence and the importance of inner interpretability. Inquiry, 1–27. https://doi.org/10.1080/0020174X.2023.2296468

  • Haier, R. J., Colom, R., & Hunt, E. (2023). The science of human intelligence. Cambridge University Press.

    Book  Google Scholar 

  • Haier, R. J., Siegel, B. V.Jr, Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J.Buchsbaum, M. S. … Buchsbaum, M. S. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12(2), 199–217.

  • Hofmann, F., & Schulte, P. (2014). The structuring causes of behavior: Has dretske saved mental causation? Acta Anal, 29, 267–284. https://doi.org/10.1007/s12136-014-0218-8

    Article  Google Scholar 

  • Jeffery, K. J., Jovalekic, A., Verriotis, M., & Hayman, R. (2013). Navigating in a three-dimensional world. Behavioral and Brain Sciences, 36(5), 523–543.

    Article  Google Scholar 

  • Kieval, P. H. (2022). Mapping representational mechanisms with deep neural networks. Synthese, 200, 196. https://doi.org/10.1007/s11229-022-03694-y

    Article  Google Scholar 

  • Kim, J. (2005). Physicalism or something near enough. Princeton University Press.

    Google Scholar 

  • Kováč, L. (2010). The 20 W sleep-walkers. EMBO Reports, 11(1), 2–2.

    Article  Google Scholar 

  • Legg, S., & Hutter, M. (2007a). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444. https://doi.org/10.1007/s11023-007-9079-x

    Article  Google Scholar 

  • Legg, S., & Hutter, M. (2007b). A collection of definitions of intelligence. Frontiers in Artificial Intelligence and Applications, 157, 17.

    Google Scholar 

  • Li, K., Hopkins, A. K., Bau, D., Viégas, F., Pfister, H., & Wattenberg, M. (2023). Emergent world representations: Exploring a sequence model trained on a synthetic task. ICLR

  • Maslej, N., Fattorini, L., Perrault, R., Parli, V., Reuel, A., Brynjolfsson, E.Clark, J, … Clark, J. (2024). Artificial intelligence index report 2024. arXiv preprint arXiv:2405.19522

  • Millière, R., & Rathkopf, C. (2024). Anthropocentric bias and the possibility of artificial cognition. In ICML 2024 Workshop on LLMs and Cognition.

  • Montemayor, C. (2023). The prospect of a humanitarian artificial intelligence: Agency and value alignment. Bloomsbury Academic.

    Book  Google Scholar 

  • Moravec, H. (1988). Mind children: The future of robot and human intelligence. Harvard University Press.

    Google Scholar 

  • Mustafa, N., Ahearn, T. S., Waiter, G. D., Murray, A. D., Whalley, L. J., & Staff, R. T. (2012). Brain structural complexity and life course cognitive change. Neuroimage, 61(3), 694–701. https://doi.org/10.1016/j.neuroimage.2012.03.088

    Article  Google Scholar 

  • Nirshberg, G. (2023). Structural resemblance and the causal role of content. Erkenntnis, 1–20. https://doi.org/10.1007/s10670-023-00699-y

  • Opie, J., & O’Brien, G. (2004). Notes toward a structuralist theory of mental representation. In H. Clapin, P. Staines, & P. Slezak (Eds.), Representation in mind: New approaches to mental representation (pp. 1–20). Elsevier.

    Google Scholar 

  • Parr, T., Pezzulo, G., & Friston, K. J. (2022). Active inference: The free energy principle in mind, brain, and behavior. MIT Press.

    Book  Google Scholar 

  • Poldrack, R. A. (2021). The physics of representation. Synthese, 199, 1307–1325. https://doi.org/10.1007/s11229-020-02793-y

    Article  Google Scholar 

  • Putnam, H. (1988). Much ado about not very much. Daedalus, 269–281.

  • Raleigh, T., & Knoks, A. (2025). Clarifying the opacity of neural networks. Minds and Machines, 35, 43. https://doi.org/10.1007/s11023-025-09745-w

    Article  Google Scholar 

  • Ramsey, W. (2017). Must cognition be representational? Synthese, 194(11), 4197–4214. https://doi.org/10.1007/s11229-014-0644-6

    Article  Google Scholar 

  • Russell, S. (2016). Rationality and intelligence: A brief update. In Fundamental issues of artificial intelligence (pp. 7–28). Springer International Publishing.

    Chapter  Google Scholar 

  • Russell, S. (2019). Human compatible: AI and the problem of control. Penguin UK.

    Google Scholar 

  • Salay, N. (2023). An unconventional look at ai: Why Today’s machine learning systems are not intelligent. Unconventional Computing, Arts, Philosophy, 523–534.

  • Saxe, G. N., Calderone, D., & Morales, L. J. (2018). Brain entropy and human intelligence: A resting-state fMRI study. PLoS One, 13(2), e0191582.

    Article  Google Scholar 

  • Schellenberg, S. (2018). The unity of perception: Content, consciousness, evidence. Oxford University Press.

    Book  Google Scholar 

  • Schwartzman, A. E., Gold, D., Andres, D., Arbuckle, T. Y., & Chaikelson, J. (1987). Stability of intelligence: A 40-year follow-up. Canadian Journal of psychology/Revue Canadienne de Psychologie, 41(2), 244.

    Article  Google Scholar 

  • Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(3), 417–424.

    Article  Google Scholar 

  • Searle, J. R. (2002). Consciousness and language. Cambridge University Press.

    Book  Google Scholar 

  • Shea, N. (2018). Representation in cognitive science (p. 304). Oxford University Press.

    Book  Google Scholar 

  • Sternberg, R. J. (2020). The augmented theory of successful intelligence. In R. J. Sternberg (Ed.), The Cambridge handbook of intelligence (2nd ed., pp. 679–708). Cambridge University Press. https://doi.org/10.1017/9781108770422.029

    Chapter  Google Scholar 

  • Stoljar, D., & Zhang, Z. V. (2024). Why ChatGPT doesn’t think: An argument from rationality. Inquiry, 1–29. https://doi.org/10.1080/0020174X.2024.2427061

  • Summerfield, C. (2023). Natural General intelligence: How understanding the brain can help us build AI. Oxford university press.

    Google Scholar 

  • Thagard, P. (2024). Bots and beasts: What makes machines, animals, and people smart?. MIT Press.

    Google Scholar 

  • Thaler, L., Arnott, S. R., & Goodale, M. A. (2011). Neural correlates of natural human echolocation in early and late blind echolocation experts. PLoS One, 6(5), e20162.

    Article  Google Scholar 

  • Titus, L. M. (2024). Does ChatGPT have semantic understanding? A problem with the statistics-of-occurrence strategy. Cognitive Systems Research, 83, 101174. https://doi.org/10.1016/j.cogsys.2023.101174

    Article  Google Scholar 

  • Treffert, D. A., & Christensen, D. D. (2005). Inside the mind of a savant. Scientific American, 293(6), 108–113.

    Article  Google Scholar 

  • Turing, A. (2004 [1948]). Intelligent machinery. In B. J. Copeland (Ed.), The essential turing: The ideas that gave birth to the computer age (pp. 395–432). Oxford University Press.

    Chapter  Google Scholar 

  • Turing, A. M. (2004 [1950]). Computing machinery and intelligence. In B. J. Copeland (Ed.), The essential turing: The ideas that gave birth to the computer age (pp. 433–464). Oxford University Press.

    Chapter  Google Scholar 

  • Williams, D. (2018). Predictive processing and the representation wars. Minds and Machines, 28(1), 141–172. https://doi.org/10.1007/s11023-017-9441-6

    Article  Google Scholar 

  • Xu, B., & Poo, M. M. (2023). Large language models and brain-inspired general intelligence. National Science Review, 10(10), nwad267.

    Article  Google Scholar 

  • Yang, E., Zhang, X., Shang, Y., & Zhang, G. (2025). High-entropy advantage in neural networks’ generalizability. arXiv preprint arXiv:2503.13145.

Download references