Pydantic AI Deep Agents Framework
Build Claude Code-Style AI Agents — In 10 Lines of Python
🔄 Unlimited Context via summarization • 🤖 Subagent Delegation sync & async • 🧩 Modular use only what you need • 🎯 Fully Type-Safe
See It In Action
Get Started in 60 Seconds
pip install pydantic-deep
from pydantic_ai_backends import StateBackend from pydantic_deep import create_deep_agent, create_default_deps agent = create_deep_agent() deps = create_default_deps(StateBackend()) result = await agent.run("Create a todo list for building a REST API", deps=deps)
That's it. Your agent can now:
- ✅ Plan tasks — break down complex work into steps
- ✅ Read & write files — navigate and modify codebases
- ✅ Delegate to subagents — spawn specialists for specific tasks
- ✅ Load skills — use domain-specific instructions
- ✅ Manage context — handle unlimited conversation length
Same Architecture as the Best
pydantic-deep implements the deep agent architecture — the same patterns powering:
| Product | What They Built | |
|---|---|---|
| 🤖 | Claude Code | Anthropic's AI coding assistant |
| 🦾 | Manus AI | Autonomous task execution |
| 👨💻 | Devin | AI software engineer |
Now you can build the same thing.
Inspired by: This framework is also inspired by LangChain's Deep Agents research on autonomous agent architectures.
Features
🧠 Planning — pydantic-ai-todo
Task tracking with
read_todos/write_todos. Subtasks & dependencies with cycle detection. PostgreSQL storage. Event system for webhooks.
📁 Filesystem — pydantic-ai-backend
Full access:
ls,read_file,write_file,edit_file,glob,grep,execute. Docker sandbox for isolation. Permission system (allow/deny/ask). Session manager for multi-user apps.
🤖 Subagents — subagents-pydantic-ai
Delegate with
taskin sync or async mode. Background task management. Dynamic agent creation at runtime. Soft/hard cancellation.
💬 Summarization — summarization-pydantic-ai
Two modes: LLM-based intelligent summaries or zero-cost sliding window. Trigger on tokens, messages, or context fraction. Custom prompts.
🎯 Skills — Load domain instructions from markdown files with YAML frontmatter.
📊 Structured Output — Type-safe responses with Pydantic models via output_type.
👤 Human-in-the-Loop — Built-in confirmation workflows for sensitive operations.
⚡ Streaming — Full streaming support for real-time responses.
Use Cases
| What You Want to Build | Key Components |
|---|---|
| AI Coding Assistant | Planning + Filesystem + Skills |
| Data Analysis Agent | File Uploads + Structured Output |
| Document Processor | Filesystem + Summarization |
| Research Agent | Subagents + Planning |
| Project Scaffolder | Planning + Filesystem |
| Test Generator | Filesystem + Docker Sandbox |
Modular — Use What You Need
Every component works standalone:
| Component | Package | Use It For |
|---|---|---|
| Backends | pydantic-ai-backend | File storage, Docker sandbox |
| Planning | pydantic-ai-todo | Task tracking |
| Subagents | subagents-pydantic-ai | Task delegation |
| Summarization | summarization-pydantic-ai | Context management |
Full-stack template? fastapi-fullstack — Production-ready with FastAPI + Next.js
Go Deeper
Structured Output
from pydantic import BaseModel class CodeReview(BaseModel): summary: str issues: list[str] score: int agent = create_deep_agent(output_type=CodeReview) result = await agent.run("Review the auth module", deps=deps) print(result.output.score) # Type-safe!
File Uploads
from pydantic_deep import run_with_files with open("data.csv", "rb") as f: result = await run_with_files( agent, "Analyze this data and find trends", deps, files=[("data.csv", f.read())], )
Context Management
from pydantic_deep import create_summarization_processor processor = create_summarization_processor( trigger=("tokens", 100000), keep=("messages", 20), ) agent = create_deep_agent(history_processors=[processor])
Custom Subagents
agent = create_deep_agent( subagents=[ { "name": "code-reviewer", "description": "Reviews code for quality issues", "instructions": "You are a senior code reviewer...", "preferred_mode": "sync", }, ], )
Skills
Create ~/.pydantic-deep/skills/review/SKILL.md:
--- name: code-review description: Review Python code for quality --- # Code Review Skill Check for: - [ ] Security issues - [ ] Type hints - [ ] Error handling
agent = create_deep_agent( skill_directories=[{"path": "~/.pydantic-deep/skills", "recursive": True}], )
Architecture
pydantic-deep
┌──────────────────────────────────────────────────────────────────┐
│ │
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │
│ │ Planning │ │Filesystem│ │ Subagents│ │ Skills │ │
│ └────┬─────┘ └────┬─────┘ └────┬─────┘ └────┬─────┘ │
│ │ │ │ │ │
│ └────────────┴─────┬──────┴────────────┘ │
│ │ │
│ ▼ │
│ ┌──────────────────┐ │
│ Summarization ──► │ Deep Agent │ │
│ │ (pydantic-ai) │ │
│ └────────┬─────────┘ │
│ │ │
│ ┌─────────────────┼─────────────────┐ │
│ ▼ ▼ ▼ │
│ ┌────────────┐ ┌────────────┐ ┌────────────┐ │
│ │ State │ │ Local │ │ Docker │ │
│ │ Backend │ │ Backend │ │ Sandbox │ │
│ └────────────┘ └────────────┘ └────────────┘ │
│ │
└──────────────────────────────────────────────────────────────────┘
Related Projects
- pydantic-ai - The foundation: Agent framework by Pydantic
- pydantic-ai-backend - File storage and sandbox backends
- pydantic-ai-todo - Task planning toolset
- subagents-pydantic-ai - Multi-agent orchestration
- summarization-pydantic-ai - Context management
- fastapi-fullstack - Full-stack AI app template
- deepagents - Deep Agent implementation by LangChain (inspiration)
Contributing
git clone https://github.com/vstorm-co/pydantic-deepagents.git cd pydantic-deepagents make install make test # 100% coverage required make all # lint + typecheck + test
See CONTRIBUTING.md for full guidelines.
Star History
License
MIT — see LICENSE
Built with ❤️ by vstorm-co

