Automatic Warp Specialization Optimization by htyu · Pull Request #5622 · triton-lang/triton

6 min read Original article ↗

Conversation

@htyu htyu deleted the hoy/ws-release32 branch

January 15, 2025 23:51

htyu added a commit to htyu/triton that referenced this pull request

Jan 15, 2025
Warp specialization enhances kernel performance by utilizing an
asynchronous execution model, where different parts of the kernel are
handled by separate hardware units. The data communication between these
units, via shared memory on the H100, operates with high efficiency.
With this in mind, we’ve developed an automatic warp specialization
optimization that partitions a user kernel into asynchronous tasks
(which map to warp groups on NVIDIA GPU), which naturally execute
concurrently, leveraging the hardware’s multitasking warp scheduler.

To enable warp specialization, user just needs to specify certain
autotune flags, i.e., `num_consumer_groups` and `num_buffers_warp_spec`.
For example, a warp-specialized GEMM implementation might look like
below. You can find a complete example in 09-persistent-matmul.py.

```python
@triton.autotune(
    configs=[
        triton.Config(
            {
                "BLOCK_SIZE_M": 128,
                "BLOCK_SIZE_N": 256,
                "BLOCK_SIZE_K": 64,
                "GROUP_SIZE_M": 8,
            },
            num_stages=2,
            num_warps=4,
            num_consumer_groups=2,
            num_buffers_warp_spec=3,
        ),
    ],
    key=["M", "N", "K"],
)
@triton.jit
def matmul_persistent_ws_kernel(
   a_ptr, b_ptr, c_ptr, M, N, K,
   stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn,
   BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
):
   pid = tl.program_id(axis=0)
   num_pid_m = tl.cdiv(M, BLOCK_M)
   num_pid_n = tl.cdiv(N, BLOCK_N)
   pid_m = pid // num_pid_m
   pid_n = pid % num_pid_n
   offs_m = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
   offs_n = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
   offs_k = tl.arange(0, BLOCK_K)
   a_ptrs = a_ptr + (offs_m[:, None] * stride_am + offs_k[None, :] * stride_ak)
   b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_n[None, :] * stride_bn)
   acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
   for k in range(0, tl.cdiv(K, BLOCK_K)):
       a = tl.load(a_ptrs)
       b = tl.load(b_ptrs)
       acc += tl.dot(a, b)
       a_ptrs += BLOCK_K * stride_ak
       b_ptrs += BLOCK_K * stride_bk
   c = acc.to(tl.float16)
   c_ptrs = c_ptr + stride_cm * offs_m[:, None] + stride_cn * offs_n[None, :]
   tl.store(c_ptrs, c)
```

bertmaher pushed a commit that referenced this pull request

Jan 16, 2025
Warp specialization enhances kernel performance by utilizing an
asynchronous execution model, where different parts of the kernel are
handled by separate hardware units. The data communication between these
units, via shared memory on the H100, operates with high efficiency.
With this in mind, we’ve developed an automatic warp specialization
optimization that partitions a user kernel into asynchronous tasks
(which map to warp groups on NVIDIA GPU), which naturally execute
concurrently, leveraging the hardware’s multitasking warp scheduler.

To enable warp specialization, user just needs to specify certain
autotune flags, i.e., `num_consumer_groups` and `num_buffers_warp_spec`.
For example, a warp-specialized GEMM implementation might look like
below. You can find a complete example in 09-persistent-matmul.py.

```python
@triton.autotune(
    configs=[
        triton.Config(
            {
                "BLOCK_SIZE_M": 128,
                "BLOCK_SIZE_N": 256,
                "BLOCK_SIZE_K": 64,
                "GROUP_SIZE_M": 8,
            },
            num_stages=2,
            num_warps=4,
            num_consumer_groups=2,
            num_buffers_warp_spec=3,
        ),
    ],
    key=["M", "N", "K"],
)
@triton.jit
def matmul_persistent_ws_kernel(
   a_ptr, b_ptr, c_ptr, M, N, K,
   stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn,
   BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
):
   pid = tl.program_id(axis=0)
   num_pid_m = tl.cdiv(M, BLOCK_M)
   num_pid_n = tl.cdiv(N, BLOCK_N)
   pid_m = pid // num_pid_m
   pid_n = pid % num_pid_n
   offs_m = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
   offs_n = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
   offs_k = tl.arange(0, BLOCK_K)
   a_ptrs = a_ptr + (offs_m[:, None] * stride_am + offs_k[None, :] * stride_ak)
   b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_n[None, :] * stride_bn)
   acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
   for k in range(0, tl.cdiv(K, BLOCK_K)):
       a = tl.load(a_ptrs)
       b = tl.load(b_ptrs)
       acc += tl.dot(a, b)
       a_ptrs += BLOCK_K * stride_ak
       b_ptrs += BLOCK_K * stride_bk
   c = acc.to(tl.float16)
   c_ptrs = c_ptr + stride_cm * offs_m[:, None] + stride_cn * offs_n[None, :]
   tl.store(c_ptrs, c)
```

<!---
The core Triton is a small number of people, and we receive many PRs
(thank
you!).  To help us review your code more quickly, **if you are a new
contributor (less than 3 PRs merged) we ask that you complete the
following
tasks and include the filled-out checklist in your PR description.**

Complete the following tasks before sending your PR, and replace `[ ]`
with
`[x]` to indicate you have done them.
-->

# New contributor declaration
- [ ] I am not making a trivial change, such as fixing a typo in a
comment.

- [ ] I have written a PR description following these
  [rules](https://cbea.ms/git-commit/#why-not-how).

- [ ] I have run `pre-commit run --from-ref origin/main --to-ref HEAD`.

- Select one of the following.
  - [ ] I have added tests.
    - `/test` for `lit` tests
    - `/unittest` for C++ tests
    - `/python/test` for end-to-end tests
  - [ ] This PR does not need a test because `FILL THIS IN`.

- Select one of the following.
  - [ ] I have not added any `lit` tests.
- [ ] The `lit` tests I have added follow these [best
practices](https://mlir.llvm.org/getting_started/TestingGuide/#filecheck-best-practices),
including the "tests should be minimal" section. (Usually running Python
code
    and using the instructions it generates is not minimal.)

manman-ren pushed a commit to manman-ren/triton that referenced this pull request

Apr 23, 2025
Warp specialization enhances kernel performance by utilizing an
asynchronous execution model, where different parts of the kernel are
handled by separate hardware units. The data communication between these
units, via shared memory on the H100, operates with high efficiency.
With this in mind, we’ve developed an automatic warp specialization
optimization that partitions a user kernel into asynchronous tasks
(which map to warp groups on NVIDIA GPU), which naturally execute
concurrently, leveraging the hardware’s multitasking warp scheduler.

To enable warp specialization, user just needs to specify certain
autotune flags, i.e., `num_consumer_groups` and `num_buffers_warp_spec`.
For example, a warp-specialized GEMM implementation might look like
below. You can find a complete example in 09-persistent-matmul.py.

```python
@triton.autotune(
    configs=[
        triton.Config(
            {
                "BLOCK_SIZE_M": 128,
                "BLOCK_SIZE_N": 256,
                "BLOCK_SIZE_K": 64,
                "GROUP_SIZE_M": 8,
            },
            num_stages=2,
            num_warps=4,
            num_consumer_groups=2,
            num_buffers_warp_spec=3,
        ),
    ],
    key=["M", "N", "K"],
)
@triton.jit
def matmul_persistent_ws_kernel(
   a_ptr, b_ptr, c_ptr, M, N, K,
   stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn,
   BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
):
   pid = tl.program_id(axis=0)
   num_pid_m = tl.cdiv(M, BLOCK_M)
   num_pid_n = tl.cdiv(N, BLOCK_N)
   pid_m = pid // num_pid_m
   pid_n = pid % num_pid_n
   offs_m = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
   offs_n = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
   offs_k = tl.arange(0, BLOCK_K)
   a_ptrs = a_ptr + (offs_m[:, None] * stride_am + offs_k[None, :] * stride_ak)
   b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_n[None, :] * stride_bn)
   acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
   for k in range(0, tl.cdiv(K, BLOCK_K)):
       a = tl.load(a_ptrs)
       b = tl.load(b_ptrs)
       acc += tl.dot(a, b)
       a_ptrs += BLOCK_K * stride_ak
       b_ptrs += BLOCK_K * stride_bk
   c = acc.to(tl.float16)
   c_ptrs = c_ptr + stride_cm * offs_m[:, None] + stride_cn * offs_n[None, :]
   tl.store(c_ptrs, c)
```

Merged up to  9e980f7112eb7d0f8c91e9e0f22742bdd09c6f80 in ws-3.3.x

This was referenced

Apr 30, 2025