GitHub - matthew-scherf/Advaita: A Formal Axiomatization of Advaita Vedanta

12 min read Original article ↗

Advaita Vedānta: Formal Specification in Classical Logic

This repository hosts the first ever formalisation of a non-western philosophical system.

Prerequisites

Install Lean 4.24.0 following the instructions at https://leanprover.github.io/lean4/doc/setup.html

The recommended installation method uses elan, the Lean version manager:

curl https://raw.githubusercontent.com/leanprover/elan/master/elan-init.sh -sSf | sh

After installation, verify Lean is available:

Expected output: Lean (version 4.16.0, ...)

Getting the Formalization

Clone the repository:

git clone https://github.com/matthew-scherf/advaita.git
cd advaita-vedanta-lean

Building the Project

The project uses Lake (Lean's build system). To build all files and verify all proofs:

This compiles all Lean files in the AdvaitaVedanta directory and verifies that all axioms and theorem proofs are correct. Compilation may take a few minutes on first build.

Expected output: Successful compilation with no errors. If compilation fails, check that you have Lean 4.16.0 installed (other versions may have compatibility issues).

Advaita Vedānta: A Formal Axiomatization

Abstract. We present a first-order axiomatization of Advaita Vedānta metaphysics, formalized and verified in the Lean 4 proof assistant. The system comprises 69 primitive axioms organized into ten modules, capturing the core doctrines of non-dual Śaṅkara Vedānta including the identity of Ātman and Brahman, the three levels of reality, the theory of superimposition (adhyāsa), and the three-state analysis (avasthā-traya) from the Māṇḍūkya Upaniṣad. All proofs are machine-verified.


1. Signature

1.1 Sorts

We introduce five primitive sorts:

Sort Interpretation
$\mathsf{Obj}$ Domain of entities (objects, subjects, states of affairs)
$\mathsf{Level}$ Ontological reality levels
$\mathsf{Time}$ Temporal instants
$\mathsf{Event}$ Occurrences
$\mathsf{State}$ States of consciousness

1.2 Constants

Level Constants. We posit three levels of reality:

$$\mathsf{Param}, \mathsf{Vyav}, \mathsf{Prat} : \mathsf{Level}$$

corresponding to pāramārthika (ultimate), vyāvahārika (conventional), and prātibhāsika (illusory) reality respectively.

State Constants. We posit three states of consciousness:

$$\mathsf{Jagrat}, \mathsf{Svapna}, \mathsf{Susupti} : \mathsf{State}$$

corresponding to waking, dream, and deep sleep.

1.3 Primitive Predicates

Metaphysical Status.

Predicate Type Interpretation
$A$ $\mathsf{Obj} \to \mathsf{Prop}$ is Absolute (Brahman-nature)
$C$ $\mathsf{Obj} \to \mathsf{Prop}$ is Conditioned (phenomenal)
$Y$ $\mathsf{Obj} \to \mathsf{Prop}$ is ultimate Subject (Ātman-nature)

Phenomenal Properties.

Predicate Type Interpretation
$T_p$ $\mathsf{Obj} \to \mathsf{Prop}$ is temporal
$S_p$ $\mathsf{Obj} \to \mathsf{Prop}$ is spatial
$Q_p$ $\mathsf{Obj} \to \mathsf{Prop}$ is qualitative

Saccidānanda.

Predicate Type Interpretation
$\mathsf{Sat}$ $\mathsf{Obj} \to \mathsf{Prop}$ has Being-nature
$\mathsf{Cit}$ $\mathsf{Obj} \to \mathsf{Prop}$ has Consciousness-nature
$\mathsf{Ananda}$ $\mathsf{Obj} \to \mathsf{Prop}$ has Bliss-nature

Ontological Relations.

Predicate Type Interpretation
$\mathsf{Cond}$ $\mathsf{Obj} \times \mathsf{Obj} \to \mathsf{Prop}$ ontological grounding
$\mathsf{MayaPow}$ $\mathsf{Obj} \times \mathsf{Obj} \to \mathsf{Prop}$ māyā-śakti manifestation
$\mathsf{Superimposed}$ $\mathsf{Obj} \times \mathsf{Obj} \to \mathsf{Prop}$ adhyāsa
$\mathsf{Appears}$ $\mathsf{Obj} \times \mathsf{Obj} \to \mathsf{Prop}$ vivarta
$\mathsf{IgnoranceOf}$ $\mathsf{Obj} \times \mathsf{Obj} \to \mathsf{Prop}$ avidyā
$\mathsf{Upadhi}$ $\mathsf{Obj} \times \mathsf{Obj} \to \mathsf{Prop}$ limiting adjunct
$\mathsf{Sublates}$ $\mathsf{Obj} \times \mathsf{Obj} \to \mathsf{Prop}$ bādha
$\mathsf{Level_of}$ $\mathsf{Obj} \times \mathsf{Level} \to \mathsf{Prop}$ level assignment

Awareness Relations.

Predicate Type Interpretation
$\mathsf{Perceives}$ $\mathsf{Obj} \times \mathsf{Obj} \to \mathsf{Prop}$ dualistic perception
$\mathsf{Witnesses}$ $\mathsf{Obj} \times \mathsf{Obj} \to \mathsf{Prop}$ non-dual witnessing

Entity Classifications.

Predicates Type
$\mathsf{Jiva}, \mathsf{Isvara}, \mathsf{World}$ $\mathsf{Obj} \to \mathsf{Prop}$
$\mathsf{SthulaSarira}, \mathsf{SukshmaSarira}, \mathsf{KaranaSarira}$ $\mathsf{Obj} \to \mathsf{Prop}$

Five Sheaths (Pañca-kośa). $$\mathsf{Annamaya}, \mathsf{Pranamaya}, \mathsf{Manomaya}, \mathsf{Vijnanamaya}, \mathsf{Anandamaya} : \mathsf{Obj} \to \mathsf{Prop}$$

Three Guṇas. $$\mathsf{Sattva}, \mathsf{Rajas}, \mathsf{Tamas} : \mathsf{Obj} \to \mathsf{Prop}$$

State Relations.

Predicate Type
$\mathsf{InState}$ $\mathsf{Obj} \times \mathsf{State} \to \mathsf{Prop}$
$\mathsf{Manifests}$ $\mathsf{Obj} \times \mathsf{Obj} \times \mathsf{State} \to \mathsf{Prop}$

Temporal and Event Relations.

Predicate Type
$\mathsf{Before}$ $\mathsf{Time} \times \mathsf{Time} \to \mathsf{Prop}$
$\mathsf{OccursAt}$ $\mathsf{Event} \times \mathsf{Time} \to \mathsf{Prop}$
$\mathsf{EventOf}$ $\mathsf{Event} \times \mathsf{Obj} \to \mathsf{Prop}$
$\mathsf{CausesEvent}$ $\mathsf{Event} \times \mathsf{Event} \to \mathsf{Prop}$

1.4 Defined Predicates

$$\Phi(x) \coloneqq T_p(x) \lor S_p(x) \lor Q_p(x)$$

$$\mathsf{Saccidananda}(x) \coloneqq \mathsf{Sat}(x) \land \mathsf{Cit}(x) \land \mathsf{Ananda}(x)$$

$$\mathsf{Sheath}(x) \coloneqq \mathsf{Annamaya}(x) \lor \mathsf{Pranamaya}(x) \lor \mathsf{Manomaya}(x) \lor \mathsf{Vijnanamaya}(x) \lor \mathsf{Anandamaya}(x)$$

$$\mathsf{HasGuna}(x) \coloneqq \mathsf{Sattva}(x) \lor \mathsf{Rajas}(x) \lor \mathsf{Tamas}(x)$$


2. Core Axioms

2.1 Fundamental Classification

Axiom A1 (Exhaustive Partition). $$\forall x.; A(x) \lor C(x)$$ $$\forall x.; \lnot(A(x) \land C(x))$$

Every entity is either Absolute or Conditioned, but not both.

Axiom A2 (Unique Absolute). $$(\exists a.; A(a)) \land (\forall a_1, a_2.; A(a_1) \land A(a_2) \to a_1 = a_2)$$

There exists exactly one Absolute.

Axiom A3 (Unique Subject). $$(\exists u.; Y(u)) \land (\forall u_1, u_2.; Y(u_1) \land Y(u_2) \to u_1 = u_2)$$

There exists exactly one ultimate Subject.

Axiom A4 (Tat Tvam Asi). $$\forall x.; Y(x) \leftrightarrow A(x)$$

The Subject is identical with the Absolute. This is the core mahāvākya.

2.2 Grounding Relations

Axiom A5 (Self-Grounding). $$\forall a.; A(a) \to \mathsf{Cond}(a, a)$$

Axiom A6 (Universal Grounding). $$\forall x.; \exists a.; A(a) \land \mathsf{Cond}(a, x)$$

Everything is grounded in the Absolute.

Axiom A9 (Asymmetry). $$\forall x, y.; \mathsf{Cond}(x, y) \land \mathsf{Cond}(y, x) \to (x = y \land A(x))$$

Mutual grounding implies identity with the Absolute.

Axiom A10 (Transitivity). $$\forall x, y, z.; \mathsf{Cond}(x, y) \land \mathsf{Cond}(y, z) \to \mathsf{Cond}(x, z)$$

2.3 Nature of the Absolute

Axiom A7a (Transcendence). $$\forall a.; A(a) \to (\lnot T_p(a) \land \lnot S_p(a) \land \lnot Q_p(a))$$

The Absolute transcends time, space, and quality.

Axiom A7b (Saccidānanda). $$\forall a.; A(a) \to \mathsf{Saccidananda}(a)$$

The Absolute is Being-Consciousness-Bliss.

Axiom A8 (Conditioned is Phenomenal). $$\forall x.; C(x) \to \Phi(x)$$

2.4 Awareness

Axiom A11 (Universal Witnessing). $$\forall a, x.; A(a) \to \mathsf{Witnesses}(a, x)$$

The Absolute witnesses everything.

Axiom A13 (Subject Does Not Perceive). $$\forall u, o.; Y(u) \to \lnot\mathsf{Perceives}(u, o)$$

The Subject never perceives dualistically.

Axiom W4 (Perceiver is Conditioned). $$\forall s.; (\exists o.; \mathsf{Perceives}(s, o)) \to C(s)$$

Axiom W11 (Witness-Absolute Identity). $$\forall w.; (\forall x.; \mathsf{Witnesses}(w, x)) \to A(w)$$

Whatever witnesses everything is the Absolute.

2.5 Change and Permanence

Axiom CH1–3 (Absolute is Unchanging). $$\forall a.; A(a) \to \lnot\mathsf{Changes}(a)$$ $$\forall a.; A(a) \to \lnot\mathsf{Born}(a)$$ $$\forall a.; A(a) \to \lnot\mathsf{Dies}(a)$$

Axiom CH4 (Conditioned Changes). $$\forall x.; C(x) \land \mathsf{Level_of}(x, \mathsf{Vyav}) \to (\mathsf{Born}(x) \lor \mathsf{Dies}(x) \lor \mathsf{Changes}(x))$$


3. Level Axioms

Axiom K1 (Exhaustive Levels). $$\forall x.; \mathsf{Level_of}(x, \mathsf{Param}) \lor \mathsf{Level_of}(x, \mathsf{Vyav}) \lor \mathsf{Level_of}(x, \mathsf{Prat})$$

Axiom K2 (Absolute at Pāramārthika Only). $$\forall a.; A(a) \to \mathsf{Level_of}(a, \mathsf{Param})$$ $$\forall a.; A(a) \to \lnot\mathsf{Level_of}(a, \mathsf{Vyav})$$ $$\forall a.; A(a) \to \lnot\mathsf{Level_of}(a, \mathsf{Prat})$$

Axiom K3–4 (Conditioned at Lower Levels). $$\forall x.; C(x) \to \lnot\mathsf{Level_of}(x, \mathsf{Param})$$ $$\forall x.; C(x) \to (\mathsf{Level_of}(x, \mathsf{Vyav}) \lor \mathsf{Level_of}(x, \mathsf{Prat}))$$

Axiom K5 (Hierarchical Sublation). $$\forall x, y.; C(x) \land \mathsf{Level_of}(x, \mathsf{Vyav}) \land \mathsf{Level_of}(y, \mathsf{Prat}) \to \mathsf{Sublates}(x, y)$$

Axiom K6 (Non-Empty Vyāvahārika). $$\exists x.; \mathsf{Level_of}(x, \mathsf{Vyav})$$


4. Māyā Axioms

Axiom M1 (Māyā Source). $$\forall a, x.; \mathsf{MayaPow}(a, x) \to A(a)$$

Only the Absolute wields māyā-śakti.

Axiom M2 (Conditioned via Māyā). $$\forall x.; C(x) \to (\exists a.; A(a) \land \mathsf{MayaPow}(a, x))$$

All conditioned entities arise through māyā.

Axiom M4 (Māyā Implies Grounding). $$\forall a, x.; \mathsf{MayaPow}(a, x) \to \mathsf{Cond}(a, x)$$

Axiom M5 (Absolute Not Subject to Māyā). $$\forall a, x.; A(a) \to \lnot\mathsf{MayaPow}(x, a)$$

Axiom M6–7 (Superimposition Structure). $$\forall x, y.; \mathsf{Superimposed}(x, y) \to C(x)$$ $$\forall x, y.; \mathsf{Superimposed}(x, y) \to A(y)$$

Superimposition is always of the conditioned upon the Absolute.

Axiom M9 (Appearance Without Change). $$\forall x, y.; \mathsf{Appears}(x, y) \to \lnot\mathsf{RealChange}(x, y)$$

Vivarta: appearance involves no real transformation of the substratum.

Axiom M10 (All Conditioned Appears). $$\forall x.; C(x) \to (\exists a.; A(a) \land \mathsf{Appears}(a, x))$$

Axiom M12 (Ignorance of the Absolute). $$\forall s, x.; \mathsf{IgnoranceOf}(s, x) \to A(x)$$

Axiom M15 (Absolute Has No Ignorance). $$\forall a, x.; A(a) \to \lnot\mathsf{IgnoranceOf}(a, x)$$

Axiom M18 (Sublation Asymmetry). $$\forall k_1, k_2.; \mathsf{Sublates}(k_1, k_2) \to \lnot\mathsf{Sublates}(k_2, k_1)$$


5. Jīva and Īśvara Axioms

Axiom J1 (Jīva is Conditioned). $$\forall j.; \mathsf{Jiva}(j) \to C(j)$$

Axiom J2 (Jīva at Vyāvahārika). $$\forall j.; \mathsf{Jiva}(j) \to \mathsf{Level_of}(j, \mathsf{Vyav})$$

Axiom J4 (Jīva is Embodied). $$\forall j.; \mathsf{Jiva}(j) \to (\exists b.; \mathsf{Body}(b) \land \mathsf{Embodied}(j, b))$$

Axiom J6 (Jīva Has Ignorance). $$\forall j.; \mathsf{Jiva}(j) \to (\exists a.; A(a) \land \mathsf{IgnoranceOf}(j, a))$$

Axiom J7a (Jīva Has Spatial Upādhi). $$\forall j.; \mathsf{Jiva}(j) \to (\exists s.; \mathsf{SpaceItself}(s) \land \mathsf{Upadhi}(s, j))$$

Axiom J8 (Multiple Jīvas). $$\exists j_1, j_2.; \mathsf{Jiva}(j_1) \land \mathsf{Jiva}(j_2) \land j_1 \neq j_2$$

Axiom I1–2 (Īśvara is Conditioned at Vyāvahārika). $$\forall i.; \mathsf{Isvara}(i) \to C(i)$$ $$\forall i.; \mathsf{Isvara}(i) \to \mathsf{Level_of}(i, \mathsf{Vyav})$$

Axiom I5 (Unique Īśvara). $$\forall i_1, i_2.; \mathsf{Isvara}(i_1) \land \mathsf{Isvara}(i_2) \to i_1 = i_2$$


6. Upādhi and Guṇa Axioms

Axiom U1 (Upādhi Implies Conditioned). $$\forall u, x.; \mathsf{Upadhi}(u, x) \to C(x)$$

Axiom U2 (Absolute Has No Upādhi). $$\forall u, a.; A(a) \to \lnot\mathsf{Upadhi}(u, a)$$

Axiom G1 (Conditioned Has Guṇas). $$\forall x.; C(x) \to \mathsf{HasGuna}(x)$$

Axiom G2 (Absolute Transcends Guṇas). $$\forall a.; A(a) \to (\lnot\mathsf{Sattva}(a) \land \lnot\mathsf{Rajas}(a) \land \lnot\mathsf{Tamas}(a))$$


7. Sheath Axioms

Axiom S1 (Sheaths are Conditioned). $$\forall s.; \mathsf{Sheath}(s) \to C(s)$$

Axiom S3–6 (Sheath Layering). $$\forall x.; \mathsf{Annamaya}(x) \to (\exists y.; \mathsf{Pranamaya}(y) \land \mathsf{Layer}(x, y))$$ $$\forall x.; \mathsf{Pranamaya}(x) \to (\exists y.; \mathsf{Manomaya}(y) \land \mathsf{Layer}(x, y))$$ $$\forall x.; \mathsf{Manomaya}(x) \to (\exists y.; \mathsf{Vijnanamaya}(y) \land \mathsf{Layer}(x, y))$$ $$\forall x.; \mathsf{Vijnanamaya}(x) \to (\exists y.; \mathsf{Anandamaya}(y) \land \mathsf{Layer}(x, y))$$

Axiom S7 (Layer Grounding). $$\forall x, y.; \mathsf{Layer}(x, y) \to \mathsf{Cond}(y, x)$$


8. Temporal Axioms

Axiom T1–4 (Strict Linear Order). $$\forall t.; \lnot\mathsf{Before}(t, t) \tag{Irreflexivity}$$ $$\forall t_1, t_2, t_3.; \mathsf{Before}(t_1, t_2) \land \mathsf{Before}(t_2, t_3) \to \mathsf{Before}(t_1, t_3) \tag{Transitivity}$$ $$\forall t_1, t_2.; \mathsf{Before}(t_1, t_2) \to \lnot\mathsf{Before}(t_2, t_1) \tag{Asymmetry}$$ $$\forall t_1, t_2.; t_1 \neq t_2 \to (\mathsf{Before}(t_1, t_2) \lor \mathsf{Before}(t_2, t_1)) \tag{Linearity}$$

Axiom T5–6 (Non-Trivial Time). $$\exists t.; \top$$ $$\exists t_1, t_2.; t_1 \neq t_2$$


9. Event Axioms

Axiom E1–2 (Event Existence). $$\forall e.; \mathsf{EE}(e) \leftrightarrow (\exists t.; \mathsf{OccursAt}(e, t))$$ $$\forall e.; \mathsf{EE}(e) \to (\forall t_1, t_2.; \mathsf{OccursAt}(e, t_1) \land \mathsf{OccursAt}(e, t_2) \to t_1 = t_2)$$

Axiom E3 (Events Have Objects). $$\forall e.; \mathsf{EE}(e) \to (\exists x.; \mathsf{EventOf}(e, x))$$

Axiom E9 (Causal Ordering). $$\forall e_1, e_2, t_1, t_2.; \mathsf{CausesEvent}(e_1, e_2) \land \mathsf{OccursAt}(e_1, t_1) \land \mathsf{OccursAt}(e_2, t_2) \to \mathsf{Before}(t_1, t_2)$$

Axiom E10 (Absolute Has No Events). $$\forall a, e.; A(a) \to \lnot\mathsf{EventOf}(e, a)$$


10. State Axioms (Avasthā-Traya)

10.1 State Structure

State Distinctness. $$\mathsf{Jagrat} \neq \mathsf{Svapna} \qquad \mathsf{Svapna} \neq \mathsf{Susupti} \qquad \mathsf{Jagrat} \neq \mathsf{Susupti}$$

Axiom AV1 (Unique State). $$\forall j.; \mathsf{Jiva}(j) \to (\exists s.; \mathsf{InState}(j, s))$$ $$\forall j, s_1, s_2.; \mathsf{Jiva}(j) \land \mathsf{InState}(j, s_1) \land \mathsf{InState}(j, s_2) \to s_1 = s_2$$

10.2 Waking State (Jāgrat)

Axiom AV3 (Waking Manifestation). $$\forall j.; \mathsf{Jiva}(j) \land \mathsf{InState}(j, \mathsf{Jagrat}) \to (\exists b.; \mathsf{SthulaSarira}(b) \land \mathsf{Manifests}(b, j, \mathsf{Jagrat}))$$ $$\forall j.; \mathsf{Jiva}(j) \land \mathsf{InState}(j, \mathsf{Jagrat}) \to (\exists w.; \mathsf{World}(w) \land \mathsf{Manifests}(w, j, \mathsf{Jagrat}))$$

Axiom AV5 (Waking Objects at Vyāvahārika). $$\forall j, x.; \mathsf{Jiva}(j) \land \mathsf{InState}(j, \mathsf{Jagrat}) \land \mathsf{Manifests}(x, j, \mathsf{Jagrat}) \land \mathsf{World}(x) \to \mathsf{Level_of}(x, \mathsf{Vyav})$$

10.3 Dream State (Svapna)

Axiom AV6–7 (Dream Non-Manifestation). $$\forall j, b.; \mathsf{Jiva}(j) \land \mathsf{InState}(j, \mathsf{Svapna}) \land \mathsf{SthulaSarira}(b) \to \lnot\mathsf{Manifests}(b, j, \mathsf{Svapna})$$ $$\forall j, w.; \mathsf{Jiva}(j) \land \mathsf{InState}(j, \mathsf{Svapna}) \land \mathsf{World}(w) \to \lnot\mathsf{Manifests}(w, j, \mathsf{Svapna})$$

Axiom AV10 (Dream Objects at Prātibhāsika). $$\forall j, x.; \mathsf{Jiva}(j) \land \mathsf{InState}(j, \mathsf{Svapna}) \land \mathsf{Manifests}(x, j, \mathsf{Svapna}) \land \lnot\mathsf{SukshmaSarira}(x) \to \mathsf{Level_of}(x, \mathsf{Prat})$$

10.4 Deep Sleep (Suṣupti)

Axiom AV11 (Complete Withdrawal). $$\forall j, x.; \mathsf{Jiva}(j) \land \mathsf{InState}(j, \mathsf{Susupti}) \to \lnot\mathsf{Manifests}(x, j, \mathsf{Susupti})$$

This is the key axiom: nothing manifests in deep sleep.

10.5 The Witness (Sākṣin)

Axiom AV16 (Witness Persists). $$\forall j, s.; \mathsf{Jiva}(j) \land \mathsf{InState}(j, s) \to (\exists u.; Y(u) \land \mathsf{Witnesses}(u, j))$$

Axiom AV18 (Witness Transcends States). $$\forall u, s.; Y(u) \to \lnot\mathsf{InState}(u, s)$$

The witness is never "in" any state—it is turīya, the fourth.

10.6 Criterion of Reality

Axiom AV22 (Transience Implies Non-Absolute). $$\forall x, j, s_1, s_2.; \mathsf{Jiva}(j) \land \mathsf{Manifests}(x, j, s_1) \land \lnot\mathsf{Manifests}(x, j, s_2) \to \lnot A(x)$$

What appears in one state but not another cannot be ultimately real.

Axiom AV23 (Absolute Never Manifests). $$\forall a, j, s.; A(a) \land \mathsf{Jiva}(j) \to \lnot\mathsf{Manifests}(a, j, s)$$

10.7 Bodies are Conditioned

Axiom AV24–25. $$\forall b.; \mathsf{SthulaSarira}(b) \to C(b)$$ $$\forall m.; \mathsf{SukshmaSarira}(m) \to C(m)$$ $$\forall k.; \mathsf{KaranaSarira}(k) \to C(k)$$ $$\forall w.; \mathsf{World}(w) \to C(w)$$


11. Key Theorems

11.1 Identity Theorems

Theorem T0 (Brahman-Ātman Identity). $$\mathsf{Brahman} = \mathsf{Atman}$$

Proof. By A2, A3, and A4. $\square$

Theorem T5 (Subject-Absolute Equivalence). $$\forall u.; Y(u) \leftrightarrow A(u)$$

This is axiom A4 itself—the core of Tat Tvam Asi.

11.2 Transcendence Theorems

Theorem T13 (Absolute Transcends Phenomenality). $$\lnot\Phi(\mathsf{Brahman})$$

Theorem T29 (Subject Transcends Guṇas). $$\lnot\mathsf{Sattva}(\mathsf{Atman}) \land \lnot\mathsf{Rajas}(\mathsf{Atman}) \land \lnot\mathsf{Tamas}(\mathsf{Atman})$$

11.3 State Analysis Theorems

Theorem ST10–11 (World and Body Absent in Deep Sleep). $$\forall j, w.; \mathsf{Jiva}(j) \land \mathsf{World}(w) \land \mathsf{InState}(j, \mathsf{Susupti}) \to \lnot\mathsf{Manifests}(w, j, \mathsf{Susupti})$$ $$\forall j, b.; \mathsf{Jiva}(j) \land \mathsf{SthulaSarira}(b) \land \mathsf{InState}(j, \mathsf{Susupti}) \to \lnot\mathsf{Manifests}(b, j, \mathsf{Susupti})$$

Theorem ST12–13 (World and Body Return on Waking). $$\forall j.; \mathsf{Jiva}(j) \land \mathsf{InState}(j, \mathsf{Jagrat}) \to (\exists w.; \mathsf{World}(w) \land \mathsf{Manifests}(w, j, \mathsf{Jagrat}))$$ $$\forall j.; \mathsf{Jiva}(j) \land \mathsf{InState}(j, \mathsf{Jagrat}) \to (\exists b.; \mathsf{SthulaSarira}(b) \land \mathsf{Manifests}(b, j, \mathsf{Jagrat}))$$

11.4 "You Are Not" Corollaries

Corollary (You Are Not the Body). $$\forall u, b.; Y(u) \land \mathsf{SthulaSarira}(b) \to u \neq b$$

Corollary (You Are Not the Mind). $$\forall u, m.; Y(u) \land \mathsf{SukshmaSarira}(m) \to u \neq m$$

Corollary (You Are Not the World). $$\forall u, w.; Y(u) \land \mathsf{World}(w) \to u \neq w$$

Proof. By A4, $Y(u) \to A(u)$. By AV24–25, bodies/mind/world satisfy $C$. By A1b, $\lnot(A(x) \land C(x))$. $\square$


12. Axiom Summary

Category Count
Core (A-series) 12
Level (K-series) 6
Māyā (M-series) 10
Jīva/Īśvara (J/I-series) 8
Upādhi/Guṇa (U/G-series) 4
Sheath (S-series) 6
Temporal (T-series) 6
Event (E-series) 5
State (AV-series) 12
Total 69

13. Philosophical Remarks

13.1 What the Formalization Captures

  1. Non-duality (Advaita). The identity $Y \leftrightarrow A$ (Axiom A4) expresses that the innermost self is Brahman.

  2. Three levels of reality. The partition into $\mathsf{Param}/\mathsf{Vyav}/\mathsf{Prat}$ with hierarchical sublation.

  3. Māyā as appearance. Vivarta (appearance without transformation) rather than pariṇāma (real modification).

  4. Three-state analysis. The argument from deep sleep—what disappears cannot be ultimately real.

  5. Witness-consciousness. Sākṣin as that which underlies all states without being in any state.

13.2 What the Formalization Cannot Capture

  1. Māyā's indeterminacy. Māyā is classically described as "neither real nor unreal" (sadasadvilakṣaṇa). Classical logic cannot express this.

  2. The performative dimension. "Tat Tvam Asi" is not just a proposition but a mahāvākya whose utterance is meant to trigger recognition.

  3. Beginninglessness of avidyā. The temporal structure here assumes time exists; the doctrine that avidyā is anādi (beginningless) would require modal or non-well-founded frameworks.

  4. Liberation as recognition. Mokṣa is not the production of a new state but the recognition of what was always the case.


Appendix: Lean Definitions

-- Brahman: The unique Absolute
noncomputable def Brahman : Obj := Classical.choose A2.1

-- Atman: The unique Subject  
noncomputable def Atman : Obj := Classical.choose A3.1

-- Phenomenality
def Phi (x : Obj) : Prop := T_p x ∨ S_p x ∨ Q_p x

-- Saccidānanda
def Saccidananda (x : Obj) : Prop := Sat x ∧ Cit x ∧ Ananda x

-- Sheath predicate
def Sheath (x : Obj) : Prop := 
  Annamaya x ∨ Pranamaya x ∨ Manomaya x ∨ Vijnanamaya x ∨ Anandamaya x

-- Guṇa predicate
def HasGuna (x : Obj) : Prop := Sattva x ∨ Rajas x ∨ Tamas x

This specification is verified in Lean 4. The complete proof development is available in the accompanying source files.