LlamaFarm - Edge AI for Everyone
Enterprise AI capabilities on your own hardware. No cloud required.
LlamaFarm is an open-source AI platform that runs entirely on your hardware. Build RAG applications, train custom classifiers, detect anomalies, and run document processingβall locally with complete privacy.
- π Complete Privacy β Your data never leaves your device
- π° No API Costs β Use open-source models without per-token fees
- π Offline Capable β Works without internet once models are downloaded
- β‘ Hardware Optimized β Automatic GPU/NPU acceleration on Apple Silicon, NVIDIA, and AMD
Desktop App Downloads
Get started instantly β no command line required:
| Platform | Download |
|---|---|
| Mac (Universal) | Download |
| Windows | Download |
| Linux (x86_64) | Download |
| Linux (ARM64) | Download |
What Can You Build?
| Capability | Description |
|---|---|
| RAG (Retrieval-Augmented Generation) | Ingest PDFs, docs, CSVs and query them with AI |
| Custom Classifiers | Train text classifiers with 8-16 examples using SetFit |
| Anomaly Detection | 12+ algorithms for batch and streaming anomaly detection |
| Tool Calling (MCP) | Connect models to external tools via Model Context Protocol |
| OCR & Document Extraction | Extract text and structured data from images and PDFs |
| Named Entity Recognition | Find people, organizations, and locations |
| Multi-Model Runtime | Switch between Ollama, OpenAI, vLLM, or local GGUF models |
Video demo (90 seconds): https://youtu.be/W7MHGyN0MdQ
Quickstart
Option 1: Desktop App
Download the desktop app above and run it. No additional setup required.
Option 2: CLI + Development Mode
-
Install the CLI
macOS / Linux:
curl -fsSL https://raw.githubusercontent.com/llama-farm/llamafarm/main/install.sh | bashWindows (PowerShell):
irm https://raw.githubusercontent.com/llama-farm/llamafarm/main/install.ps1 | iex
Or download directly from releases.
-
Create and run a project
lf init my-project # Generates llamafarm.yaml lf start # Starts services and opens Designer UI
-
Chat with your AI
lf chat # Interactive chat lf chat "Hello, LlamaFarm!" # One-off message
The Designer web interface is available at http://localhost:14345.
Option 3: Development from Source
git clone https://github.com/llama-farm/llamafarm.git cd llamafarm # Install Nx globally and initialize the workspace npm install -g nx nx init --useDotNxInstallation --interactive=false # Required on first clone # Start all services (run each in a separate terminal) nx start server # FastAPI server (port 14345) nx start rag # RAG worker for document processing nx start universal-runtime # ML models, OCR, embeddings (port 11540)
Architecture
LlamaFarm consists of three main services:
| Service | Port | Purpose |
|---|---|---|
| Server | 14345 | FastAPI REST API, Designer web UI, project management |
| RAG Worker | - | Celery worker for async document processing |
| Universal Runtime | 11540 | ML model inference, embeddings, OCR, anomaly detection |
All configuration lives in llamafarm.yamlβno scattered settings or hidden defaults.
Runtime Options
Universal Runtime (Recommended)
The Universal Runtime provides access to HuggingFace models plus specialized ML capabilities:
- Text Generation - Any HuggingFace text model
- Embeddings - sentence-transformers and other embedding models
- OCR - Text extraction from images/PDFs (Surya, EasyOCR, PaddleOCR, Tesseract)
- Document Extraction - Forms, invoices, receipts via vision models
- Text Classification - Pre-trained or custom models via SetFit
- Named Entity Recognition - Extract people, organizations, locations
- Reranking - Cross-encoder models for improved RAG quality
- Anomaly Detection - Isolation Forest, One-Class SVM, Local Outlier Factor, Autoencoders
runtime: models: default: provider: universal model: Qwen/Qwen2.5-1.5B-Instruct base_url: http://127.0.0.1:11540/v1
Ollama
Simple setup for GGUF models with CPU/GPU acceleration:
runtime: models: default: provider: ollama model: qwen3:8b base_url: http://localhost:11434/v1
OpenAI-Compatible
Works with vLLM, Together, Mistral API, or any OpenAI-compatible endpoint:
runtime: models: default: provider: openai model: gpt-4o base_url: https://api.openai.com/v1 api_key: ${OPENAI_API_KEY}
Core Workflows
CLI Commands
| Task | Command |
|---|---|
| Initialize project | lf init my-project |
| Start services | lf start |
| Interactive chat | lf chat |
| One-off message | lf chat "Your question" |
| List models | lf models list |
| Use specific model | lf chat --model powerful "Question" |
| Create dataset | lf datasets create -s pdf_ingest -b main_db research |
| Upload files (auto-process by default) | lf datasets upload research ./docs/*.pdf |
| Process dataset (if you skipped auto-process) | lf datasets process research |
| Query RAG | lf rag query --database main_db "Your query" |
| Check RAG health | lf rag health |
RAG Pipeline
- Create a dataset linked to a processing strategy and database
- Upload files (PDF, DOCX, Markdown, TXT) β processing runs automatically unless you pass
--no-process - Process manually only when you intentionally skipped auto-processing (e.g., large batches)
- Query using semantic search with optional metadata filtering
lf datasets create -s default -b main_db research lf datasets upload research ./papers/*.pdf # auto-processes by default # For large batches: # lf datasets upload research ./papers/*.pdf --no-process # lf datasets process research lf rag query --database main_db "What are the key findings?"
Designer Web UI
The Designer at http://localhost:14345 provides:
- Project management with briefs and quick actions
- Visual dataset management with drag-and-drop uploads
- Database & RAG configuration with built-in query testing
- Prompt engineering with template variables and testing
- Interactive chat with RAG toggle and retrieved context display
- Config editor with syntax highlighting, validation, and auto-completion
- Switch between visual Designer and raw YAML modes in any section
See the Designer Features Guide for details.
Configuration
llamafarm.yaml is the source of truth for each project:
version: v1 name: my-assistant namespace: default # Multi-model configuration runtime: default_model: fast models: fast: description: "Fast local model" provider: universal model: Qwen/Qwen2.5-1.5B-Instruct base_url: http://127.0.0.1:11540/v1 powerful: description: "More capable model" provider: universal model: Qwen/Qwen2.5-7B-Instruct base_url: http://127.0.0.1:11540/v1 # System prompts prompts: - name: default messages: - role: system content: You are a helpful assistant. # RAG configuration rag: databases: - name: main_db type: ChromaStore default_embedding_strategy: default_embeddings default_retrieval_strategy: semantic_search embedding_strategies: - name: default_embeddings type: UniversalEmbedder config: model: sentence-transformers/all-MiniLM-L6-v2 base_url: http://127.0.0.1:11540/v1 retrieval_strategies: - name: semantic_search type: BasicSimilarityStrategy config: top_k: 5 data_processing_strategies: - name: default parsers: - type: PDFParser_LlamaIndex config: chunk_size: 1000 chunk_overlap: 100 - type: MarkdownParser_Python config: chunk_size: 1000 extractors: [] # Dataset definitions datasets: - name: research data_processing_strategy: default database: main_db
Environment Variable Substitution
Use ${VAR} syntax to inject secrets from .env files:
runtime: models: openai: api_key: ${OPENAI_API_KEY} # With default: ${OPENAI_API_KEY:-sk-default} # From specific file: ${file:.env.production:API_KEY}
See the Configuration Guide for complete reference.
REST API
LlamaFarm provides an OpenAI-compatible REST API:
Chat Completions
curl -X POST http://localhost:14345/v1/projects/default/my-project/chat/completions \ -H "Content-Type: application/json" \ -d '{ "messages": [{"role": "user", "content": "Hello"}], "stream": false, "rag_enabled": true }'
RAG Query
curl -X POST http://localhost:14345/v1/projects/default/my-project/rag/query \ -H "Content-Type: application/json" \ -d '{ "query": "What are the requirements?", "database": "main_db", "top_k": 5 }'
See the API Reference for all endpoints.
Specialized ML Capabilities
The Universal Runtime provides endpoints beyond chat:
OCR & Document Extraction
curl -X POST http://localhost:14345/v1/vision/ocr \ -F "file=@document.pdf" \ -F "model=surya"
Anomaly Detection
LlamaFarm supports 12+ anomaly detection algorithms via PyOD, with both batch and streaming modes.
# Train on normal data curl -X POST http://localhost:14345/v1/ml/anomaly/fit \ -H "Content-Type: application/json" \ -d '{"model": "sensor-detector", "backend": "ecod", "data": [[22.1], [23.5], ...]}' # Detect anomalies curl -X POST http://localhost:14345/v1/ml/anomaly/detect \ -H "Content-Type: application/json" \ -d '{"model": "sensor-detector", "data": [[22.0], [100.0], [23.0]], "threshold": 0.5}' # Streaming detection (handles cold start, auto-retraining, sliding windows) curl -X POST http://localhost:14345/v1/ml/anomaly/stream \ -H "Content-Type: application/json" \ -d '{"model": "live-sensor", "data": {"temperature": 72.5}, "backend": "ecod"}'
Available backends: ecod (recommended), isolation_forest, one_class_svm, local_outlier_factor, autoencoder, hbos, copod, knn, mcd, cblof, suod, loda
Text Classification & NER
See the Models Guide for complete documentation.
Tool Calling (MCP)
Give models access to external tools via the Model Context Protocol:
# In llamafarm.yaml mcp: servers: - name: filesystem transport: stdio command: npx args: ['-y', '@modelcontextprotocol/server-filesystem', '/data'] runtime: models: - name: assistant provider: ollama model: llama3.1:8b mcp_servers: [filesystem]
LlamaFarm also exposes its own API as MCP tools for use with Claude Desktop, Cursor, and other MCP clients. See the Tool Calling Guide.
Examples
| Example | Description | Location |
|---|---|---|
| RAG Examples | ||
| Large Complex PDFs | Multi-megabyte planning ordinances | examples/large_complex_rag/ |
| Many Small Files | FDA correspondence letters | examples/many_small_file_rag/ |
| Mixed Formats | PDF, Markdown, HTML, text, and code | examples/mixed_format_rag/ |
| Quick Notes | Rapid smoke tests with small files | examples/quick_rag/ |
| Anomaly Detection | ||
| Quick Start | Simplest anomaly detection example | examples/anomaly/01_quick_start.py |
| Fraud Detection | Training, saving, loading models | examples/anomaly/02_fraud_detection.py |
| Streaming Sensors | IoT monitoring with rolling features | examples/anomaly/03_streaming_sensors.py |
| Backend Comparison | Compare all 12 algorithms | examples/anomaly/04_backend_comparison.py |
| Use Cases | ||
| FDA Letters Assistant | Regulatory document analysis | examples/fda_rag/ |
| Government Planning | Large ordinance documents | examples/gov_rag/ |
See examples/README.md for setup instructions and the full list.
Industry Use Cases
LlamaFarm is used across industries for document analysis, monitoring, and fraud detection:
- Pharmaceutical & Therapeutics β Analyze FDA correspondence, track regulatory questions
- IoT Sensor Monitoring β Real-time streaming anomaly detection with automatic retraining
- Financial Fraud Detection β Multi-stage fraud detection with velocity and behavioral patterns
Development & Testing
# Python server tests cd server && uv sync && uv run --group test python -m pytest # CLI tests cd cli && go test ./... # RAG tests cd rag && uv sync && uv run pytest tests/ # Universal Runtime tests cd runtimes/universal && uv sync && uv run pytest tests/ # Build docs nx build docs
Extensibility
- Add runtimes by implementing provider support and updating schema
- Add vector stores by implementing store backends (Chroma, Qdrant, etc.)
- Add parsers for new file formats (PDF, DOCX, HTML, CSV, etc.)
- Add extractors for custom metadata extraction
- Add CLI commands under
cli/cmd/
See the Extending Guide for step-by-step instructions.
Community & Support
- Discord - Chat with the team and community
- GitHub Issues - Bug reports and feature requests
- Discussions - Ideas and proposals
- Contributing Guide - Code style and contribution process
License
Licensed under the Apache 2.0 License. See CREDITS for acknowledgments.
Build locally. Deploy anywhere. Own your AI.