tensordiagram
A python library for visualizing tensors from torch, jax, tensorflow, numpy, etc. Helps with learning and debugging in notebooks and other contexts. It's built on top of the graphics backend, chalk.
If you want to practice your tensor skills, try Tensor Puzzles 2. It's a notebook with a collection of hands-on pytorch puzzles. And yes, it uses tensordiagram 😃. If you're interested in learning modern ML engineering, check out qaggle.
why
Debugging deep learning code is hard—especially when it's foreign, because it's hard to imagine tensor manipulations, e.g. F.conv2d(x.unsqueeze(1), w.transpose(-1, -2)).squeeze().view(B, L, -1) in your head. Printing shapes and tensor values only gets you so far. tensordiagram lets me easily represent tensors visually, inside python code, notebooks, and interpreter sessions.
Other python libraries for creating tensor diagrams are either too physics and math focused, not notebook-friendly, limited to visualizing single tensors, and/or serve a wider purpose (so have a steep learning curve).
install
pip install tensordiagram
Separately, you'll need to install cairo for PNG rendering and Image objects:
# might need to install the base library first on debian sudo apt-get install libcairo2-dev # cairo python bindings + Pillow for Image objects pip install ".[cairo]"
Or, for SVG rendering and Image objects:
# includes cairosvg + Pillow for Image objects pip install ".[svg]"
intro
For an in-depth guide, refer to this notebook.
import numpy as np import tensordiagram as td tensor = np.arange(12).reshape(3, 4) diagram = td.to_diagram(tensor)
The diagram can be saved using render_png or render_svg:
diagram.render_png("output.png", height=300)
Alternatively, render to a PIL Image object instead of saving to disk:
# Render to a PIL Image object img = diagram.to_image_png(height=300) # Returns PIL.Image.Image # Or use the generic to_image() method (uses PNG by default) img = diagram.to_image(height=300) # Can also render via SVG and convert to Image img = diagram.to_image_svg(height=300)
Style and annotate diagrams:
diagram \ .fill_values() \ .fill_color("lightblue") \ .annotate_dim_size(dim=0, color="lightgreen")
3d tensor:
papaya = "#ff9700" tensor = np.arange(24).reshape((2, 3, 4)) diagram = td.to_diagram(tensor).fill_color(papaya)
Combine tensor and chalk diagrams for intricate outputs:
import random import torch color_names = [ "red", "blue", "green", "purple", "orange", "pink", "cyan"] def random_colors_tensor(shape): colors_array = np.empty(shape, dtype=object) for index, _ in np.ndenumerate(colors_array): colors_array[index] = random.choice(color_names) return colors_array color_tensor = random_colors_tensor(shape=(2, 3, 4)) # tensors t = torch.arange(24).reshape((2, 3, 4)) slice_1 = t[0, :, :].unsqueeze(0) slice_2 = t[:, 1, :].unsqueeze(1) # tensor diagrams t_d = td.to_diagram(t).fill_color(lambda idx, v: color_tensor[idx]) slice_1_d = td.to_diagram(slice_1).fill_color(lambda idx, v: color_tensor[idx]) slice_2_d = td.to_diagram(slice_2).fill_color(lambda idx, v: color_tensor[idx[0], 1, idx[2]]) # chalk diagrams diagrams = [] for d in [t_d, slice_1_d, slice_2_d]: diagrams.append(d.to_chalk_diagram().center_xy()) # composite diagram composite = chalk.hcat(diagrams, 1.0) # add background + display composite = composite.pad(1.5).center_xy() env = composite.get_envelope() chalk.set_svg_height(300) chalk.rectangle(env.width * 0.8, env.height).fill_color(Color("white")) + composite.translate(dx=env.width * 0.1, dy=0)
For more examples and documentation, refer to this guide.
dev
test
setup
Visual regression tests compare rendered output against reference images stored in fixtures/.
To generate or update reference images:
# all reference images python tests/generate_references.py --all # list reference images python tests/generate_references.py --list # select reference images python tests/generate_references.py 3d_tensor styled_gradient
run
All tests:
deploy
main package (tensordiagram)
- update version in
pyproject.tomland commit git tag vX.X.Xgit push origin vX.X.X(auto-triggers gh action for publishing to PyPI)- create a new gh release with the tag
mcp package (tensordiagram-mcp)
- update version in
mcp/pyproject.tomland commit git tag mcp-vX.X.Xgit push origin mcp-vX.X.X(auto-triggers gh action for publishing to PyPI)- create a new gh release with the tag
license
MIT




