exec-sandbox
Secure code execution in isolated lightweight VMs (QEMU microVMs). Python library for running untrusted Python, JavaScript, and shell code with 7-layer security isolation.
Highlights
- Hardware isolation - Each execution runs in a dedicated lightweight VM (QEMU with KVM/HVF hardware acceleration), not containers
- Fast startup - 400ms fresh start, 1-2ms with pre-started VMs (warm pool)
- Simple API - Just
Schedulerandrun(), async-friendly; plussbxCLI for quick testing - Streaming output - Real-time output as code runs
- Smart caching - Local + S3 remote cache for VM snapshots
- Network control - Disabled by default, optional domain allowlisting with defense-in-depth filtering (DNS + TLS SNI + DNS cross-validation to prevent spoofing)
- Memory optimization - Compressed memory (zram) + unused memory reclamation (balloon) for ~30% more capacity, ~80% smaller snapshots
Installation
uv add exec-sandbox # Core library uv add "exec-sandbox[s3]" # + S3 snapshot caching
# Install QEMU runtime brew install qemu # macOS apt install qemu-system # Ubuntu/Debian
Quick Start
CLI
The sbx command provides quick access to sandbox execution from the terminal:
# Run Python code sbx run 'print("Hello from sandbox")' # Run JavaScript sbx run -l javascript 'console.log("Hello from sandbox")' # Run a file (language auto-detected from extension) sbx run script.py sbx run app.js # From stdin echo 'print(42)' | sbx run - # With packages sbx run -p requests -p pandas 'import pandas; print(pandas.__version__)' # With timeout and memory limits sbx run -t 60 -m 512 long_script.py # Enable network with domain allowlist sbx run --network --allow-domain api.example.com fetch_data.py # Expose ports (guest:8080 → host:dynamic) sbx run --expose 8080 --json 'print("ready")' | jq '.exposed_ports[0].url' # Expose with explicit host port (guest:8080 → host:3000) sbx run --expose 8080:3000 --json 'print("ready")' | jq '.exposed_ports[0].external' # Start HTTP server with port forwarding (runs until timeout) sbx run -t 60 --expose 8080 'import http.server; http.server.test(port=8080, bind="0.0.0.0")' # JSON output for scripting sbx run --json 'print("test")' | jq .exit_code # Environment variables sbx run -e API_KEY=secret -e DEBUG=1 script.py # Multiple sources (run concurrently) sbx run 'print(1)' 'print(2)' script.py # Multiple inline codes sbx run -c 'print(1)' -c 'print(2)' # Limit concurrency sbx run -j 5 *.py
CLI Options:
| Option | Short | Description | Default |
|---|---|---|---|
--language |
-l |
python, javascript, raw | auto-detect |
--code |
-c |
Inline code (repeatable, alternative to positional) | - |
--package |
-p |
Package to install (repeatable) | - |
--timeout |
-t |
Timeout in seconds | 30 |
--memory |
-m |
Memory in MB | 256 |
--env |
-e |
Environment variable KEY=VALUE (repeatable) | - |
--network |
Enable network access | false | |
--allow-domain |
Allowed domain (repeatable) | - | |
--expose |
Expose port INTERNAL[:EXTERNAL][/PROTOCOL] (repeatable) |
- | |
--json |
JSON output | false | |
--quiet |
-q |
Suppress progress output | false |
--no-validation |
Skip package allowlist validation | false | |
--concurrency |
-j |
Max concurrent VMs for multi-input | 10 |
Python API
Basic Execution
from exec_sandbox import Scheduler async with Scheduler() as scheduler: result = await scheduler.run( code="print('Hello, World!')", language="python", # or "javascript", "raw" ) print(result.stdout) # Hello, World! print(result.exit_code) # 0
With Packages
First run installs and creates snapshot; subsequent runs restore in <400ms.
async with Scheduler() as scheduler: result = await scheduler.run( code="import pandas; print(pandas.__version__)", language="python", packages=["pandas==2.2.0", "numpy==1.26.0"], ) print(result.stdout) # 2.2.0
Streaming Output
async with Scheduler() as scheduler: result = await scheduler.run( code="for i in range(5): print(i)", language="python", on_stdout=lambda chunk: print(f"[OUT] {chunk}", end=""), on_stderr=lambda chunk: print(f"[ERR] {chunk}", end=""), )
Network Access
async with Scheduler() as scheduler: result = await scheduler.run( code="import urllib.request; print(urllib.request.urlopen('https://httpbin.org/ip').read())", language="python", allow_network=True, allowed_domains=["httpbin.org"], # Domain allowlist )
Port Forwarding
Expose VM ports to the host for health checks, API testing, or service validation.
from exec_sandbox import Scheduler, PortMapping async with Scheduler() as scheduler: # Port forwarding without internet (isolated) result = await scheduler.run( code="print('server ready')", expose_ports=[PortMapping(internal=8080, external=3000)], # Guest:8080 → Host:3000 allow_network=False, # No outbound internet ) print(result.exposed_ports[0].url) # http://127.0.0.1:3000 # Dynamic port allocation (OS assigns external port) result = await scheduler.run( code="print('server ready')", expose_ports=[8080], # external=None → OS assigns port ) print(result.exposed_ports[0].external) # e.g., 52341 # Long-running server with port forwarding result = await scheduler.run( code="import http.server; http.server.test(port=8080, bind='0.0.0.0')", expose_ports=[PortMapping(internal=8080)], timeout_seconds=60, # Server runs until timeout )
Security: Port forwarding works independently of internet access. When allow_network=False, guest VMs cannot initiate outbound connections (all outbound TCP/UDP blocked), but host-to-guest port forwarding still works.
Production Configuration
from exec_sandbox import Scheduler, SchedulerConfig config = SchedulerConfig( max_concurrent_vms=20, # Limit parallel executions warm_pool_size=1, # Pre-started VMs (warm pool), size = max_concurrent_vms × 25% default_memory_mb=512, # Per-VM memory default_timeout_seconds=60, # Execution timeout s3_bucket="my-snapshots", # Remote cache for package snapshots s3_region="us-east-1", ) async with Scheduler(config) as scheduler: result = await scheduler.run(...)
Error Handling
from exec_sandbox import Scheduler, VmTimeoutError, PackageNotAllowedError, SandboxError async with Scheduler() as scheduler: try: result = await scheduler.run(code="while True: pass", language="python", timeout_seconds=5) except VmTimeoutError: print("Execution timed out") except PackageNotAllowedError as e: print(f"Package not in allowlist: {e}") except SandboxError as e: print(f"Sandbox error: {e}")
Asset Downloads
exec-sandbox requires VM images (kernel, initramfs, qcow2) and binaries (gvproxy-wrapper) to run. These assets are automatically downloaded from GitHub Releases on first use.
How it works
- On first
Schedulerinitialization, exec-sandbox checks if assets exist in the cache directory - If missing, it queries the GitHub Releases API for the matching version (
v{__version__}) - Assets are downloaded over HTTPS, verified against SHA256 checksums (provided by GitHub API), and decompressed
- Subsequent runs use the cached assets (no re-download)
Cache locations
| Platform | Location |
|---|---|
| macOS | ~/Library/Caches/exec-sandbox/ |
| Linux | ~/.cache/exec-sandbox/ (or $XDG_CACHE_HOME/exec-sandbox/) |
Environment variables
| Variable | Description |
|---|---|
EXEC_SANDBOX_CACHE_DIR |
Override cache directory |
EXEC_SANDBOX_OFFLINE |
Set to 1 to disable auto-download (fail if assets missing) |
EXEC_SANDBOX_ASSET_VERSION |
Force specific release version |
Pre-downloading for offline use
Use sbx prefetch to download all assets ahead of time:
sbx prefetch # Download all assets for current arch sbx prefetch --arch aarch64 # Cross-arch prefetch sbx prefetch -q # Quiet mode (CI/Docker)
Dockerfile example:
FROM ghcr.io/astral-sh/uv:python3.12-bookworm RUN uv pip install --system exec-sandbox RUN sbx prefetch -q ENV EXEC_SANDBOX_OFFLINE=1 # Assets cached, no network needed at runtime
Security
Assets are verified against SHA256 checksums and built with provenance attestations.
Documentation
- QEMU Documentation - Virtual machine emulator
- KVM - Linux hardware virtualization
- HVF - macOS hardware virtualization (Hypervisor.framework)
- cgroups v2 - Linux resource limits
- seccomp - System call filtering
Configuration
| Parameter | Default | Description |
|---|---|---|
max_concurrent_vms |
10 | Maximum parallel VMs |
warm_pool_size |
0 | Pre-started VMs (warm pool). Set >0 to enable. Size = max_concurrent_vms × 25% per language |
default_memory_mb |
256 | VM memory (128-2048 MB). Effective ~25% higher with memory compression (zram) |
default_timeout_seconds |
30 | Execution timeout (1-300s) |
images_dir |
auto | VM images directory |
snapshot_cache_dir |
/tmp/exec-sandbox-cache | Local snapshot cache |
s3_bucket |
None | S3 bucket for remote snapshot cache |
s3_region |
us-east-1 | AWS region |
enable_package_validation |
True | Validate against top 10k packages (PyPI for Python, npm for JavaScript) |
auto_download_assets |
True | Auto-download VM images from GitHub Releases |
Environment variables: EXEC_SANDBOX_MAX_CONCURRENT_VMS, EXEC_SANDBOX_IMAGES_DIR, etc.
Memory Optimization
VMs include automatic memory optimization (no configuration required):
- Compressed swap (zram) - ~25% more usable memory via lz4 compression
- Memory reclamation (virtio-balloon) - 70-90% smaller snapshots
Execution Result
| Field | Type | Description |
|---|---|---|
stdout |
str | Captured output (max 1MB) |
stderr |
str | Captured errors (max 100KB) |
exit_code |
int | Process exit code (0 = success) |
execution_time_ms |
int | Duration reported by VM |
external_cpu_time_ms |
int | CPU time measured by host |
external_memory_peak_mb |
int | Peak memory measured by host |
timing.setup_ms |
int | Resource setup (filesystem, limits, network) |
timing.boot_ms |
int | VM boot time |
timing.execute_ms |
int | Code execution |
timing.total_ms |
int | End-to-end time |
exposed_ports |
list | Port mappings with .internal, .external, .host, .url |
Exceptions
| Exception | Description |
|---|---|
SandboxError |
Base exception |
SandboxDependencyError |
Optional dependency missing (e.g., aioboto3 for S3) |
VmError |
VM operation failed |
VmTimeoutError |
Execution exceeded timeout |
VmBootError |
VM failed to start |
CommunicationError |
VM communication failed |
SocketAuthError |
Socket peer authentication failed |
GuestAgentError |
VM helper process returned error |
PackageNotAllowedError |
Package not in allowlist |
SnapshotError |
Snapshot operation failed |
AssetError |
Asset download/verification error (base) |
AssetDownloadError |
Asset download failed |
AssetChecksumError |
Asset checksum verification failed |
AssetNotFoundError |
Asset not found in registry/release |
Pitfalls
# VMs are never reused - state doesn't persist result1 = await scheduler.run("x = 42", language="python") result2 = await scheduler.run("print(x)", language="python") # NameError! # Fix: single execution with all code await scheduler.run("x = 42; print(x)", language="python") # Pre-started VMs (warm pool) only work without packages config = SchedulerConfig(warm_pool_size=1) await scheduler.run(code="...", packages=["pandas"]) # Bypasses warm pool, fresh start (400ms) await scheduler.run(code="...") # Uses warm pool (1-2ms) # Pin package versions for caching packages=["pandas==2.2.0"] # Cacheable packages=["pandas"] # Cache miss every time # Streaming callbacks must be fast (blocks async execution) on_stdout=lambda chunk: time.sleep(1) # Blocks! on_stdout=lambda chunk: buffer.append(chunk) # Fast # Memory overhead: pre-started VMs use (max_concurrent_vms × 25%) × 2 languages × 256MB # max_concurrent_vms=20 → 5 VMs/lang × 2 × 256MB = 2.5GB for warm pool alone # Memory can exceed configured limit due to compressed swap default_memory_mb=256 # Code can actually use ~280-320MB thanks to compression # Don't rely on memory limits for security - use timeouts for runaway allocations # Network without domain restrictions is risky allow_network=True # Full internet access allow_network=True, allowed_domains=["api.example.com"] # Controlled # Port forwarding binds to localhost only expose_ports=[8080] # Binds to 127.0.0.1, not 0.0.0.0 # If you need external access, use a reverse proxy on the host
Limits
| Resource | Limit |
|---|---|
| Max code size | 1MB |
| Max stdout | 1MB |
| Max stderr | 100KB |
| Max packages | 50 |
| Max env vars | 100 |
| Max exposed ports | 10 |
| Execution timeout | 1-300s |
| VM memory | 128-2048MB |
| Max concurrent VMs | 1-100 |
Security Architecture
| Layer | Technology | Protection |
|---|---|---|
| 1 | Hardware virtualization (KVM/HVF) | CPU isolation enforced by hardware |
| 2 | Unprivileged QEMU | No root privileges, minimal exposure |
| 3 | System call filtering (seccomp) | Blocks unauthorized OS calls |
| 4 | Resource limits (cgroups v2) | Memory, CPU, process limits |
| 5 | Process isolation (namespaces) | Separate process, network, filesystem views |
| 6 | Security policies (AppArmor/SELinux) | When available |
| 7 | Socket authentication (SO_PEERCRED/LOCAL_PEERCRED) | Verifies QEMU process identity |
Guarantees:
- VMs are never reused - fresh VM per
run(), destroyed immediately after - Network disabled by default - requires explicit
allow_network=True - Domain allowlisting with 3-layer outbound filtering — DNS resolution blocked for non-allowed domains, TLS SNI inspection on port 443, and DNS cross-validation to prevent SNI spoofing
- Package validation - only top 10k Python/JavaScript packages allowed by default
- Port forwarding isolation - when
expose_portsis used withoutallow_network, guest cannot initiate any outbound connections (all outbound TCP/UDP blocked)
Requirements
| Requirement | Supported |
|---|---|
| Python | 3.12, 3.13, 3.14 (including free-threaded) |
| Linux | x64, arm64 |
| macOS | x64, arm64 |
| QEMU | 8.0+ |
| Hardware acceleration | KVM (Linux) or HVF (macOS) recommended, 10-50x faster |
Verify hardware acceleration is available:
ls /dev/kvm # Linux sysctl kern.hv_support # macOS
Without hardware acceleration, QEMU uses software emulation (TCG), which is 10-50x slower.
Linux Setup (Optional Security Hardening)
For enhanced security on Linux, exec-sandbox can run QEMU as an unprivileged qemu-vm user. This isolates the VM process from your user account.
# Create qemu-vm system user sudo useradd --system --no-create-home --shell /usr/sbin/nologin qemu-vm # Add qemu-vm to kvm group (for hardware acceleration) sudo usermod -aG kvm qemu-vm # Add your user to qemu-vm group (for socket access) sudo usermod -aG qemu-vm $USER # Re-login or activate group membership newgrp qemu-vm
Why is this needed? When qemu-vm user exists, exec-sandbox runs QEMU as that user for process isolation. The host needs to connect to QEMU's Unix sockets (0660 permissions), which requires group membership. This follows the libvirt security model.
If qemu-vm user doesn't exist, exec-sandbox runs QEMU as your user (no additional setup required, but less isolated).
VM Images
Pre-built images from GitHub Releases:
| Image | Runtime | Package Manager | Size | Description |
|---|---|---|---|---|
python-3.14-base |
Python 3.14 | uv | ~140MB | Full Python environment with C extension support |
node-1.3-base |
Bun 1.3 | bun | ~57MB | Fast JavaScript/TypeScript runtime with Node.js compatibility |
raw-base |
None | None | ~15MB | Shell scripts and custom runtimes |
All images are based on Alpine Linux 3.21 (Linux 6.12 LTS, musl libc) and include common tools for AI agent workflows.
Common Tools (all images)
| Tool | Purpose |
|---|---|
git |
Version control, clone repositories |
curl |
HTTP requests, download files |
jq |
JSON processing |
bash |
Shell scripting |
coreutils |
Standard Unix utilities (ls, cp, mv, etc.) |
tar, gzip, unzip |
Archive extraction |
file |
File type detection |
Python Image
| Component | Version | Notes |
|---|---|---|
| Python | 3.14 | python-build-standalone (musl) |
| uv | 0.9+ | 10-100x faster than pip (docs) |
| gcc, musl-dev | Alpine | For C extensions (numpy, pandas, etc.) |
Usage notes:
- Use
uv pip installinstead ofpip install(pip not included) - Python 3.14 includes t-strings, deferred annotations, free-threading support
JavaScript Image
| Component | Version | Notes |
|---|---|---|
| Bun | 1.3 | Runtime, bundler, package manager (docs) |
Usage notes:
- Bun is a Node.js-compatible runtime (not Node.js itself)
- Built-in TypeScript/JSX support, no transpilation needed
- Use
bun installfor packages,bun runfor scripts - Near-complete Node.js API compatibility
Raw Image
Minimal Alpine Linux with common tools only. Use for:
- Shell script execution (
language="raw") - Custom runtime installation
- Lightweight workloads
Build from source:
./scripts/build-images.sh
# Output: ./images/dist/python-3.14-base.qcow2, ./images/dist/node-1.3-base.qcow2, ./images/dist/raw-base.qcow2Security
- Security Policy - Vulnerability reporting
- Dependency list (SBOM) - Full list of included software, attached to releases
Contributing
Contributions welcome! Please open an issue first to discuss changes.
make install # Setup environment make test # Run tests make lint # Format and lint