chDB
chDB is an in-process SQL OLAP Engine powered by ClickHouse 1 For more details: The birth of chDB
Features
- In-process SQL OLAP Engine, powered by ClickHouse
- No need to install ClickHouse
- Minimized data copy from C++ to Python with python memoryview
- Input&Output support Parquet, CSV, JSON, Arrow, ORC and 60+more formats, samples
- Support Python DB API 2.0, example
Arch
Get Started
Get started with chdb using our Installation and Usage Examples
Installation
Currently, chDB supports Python 3.8+ on macOS and Linux (x86_64 and ARM64).
Usage
Run in command line
python3 -m chdb SQL [OutputFormat]
python3 -m chdb "SELECT 1,'abc'" PrettyData Input
The following methods are available to access on-disk and in-memory data formats:
๐๏ธ Connection based API (recommended)
import chdb # Create a connection (in-memory by default) conn = chdb.connect(":memory:") # Or use file-based: conn = chdb.connect("test.db") # Create a cursor cur = conn.cursor() # Execute queries cur.execute("SELECT number, toString(number) as str FROM system.numbers LIMIT 3") # Fetch data in different ways print(cur.fetchone()) # Single row: (0, '0') print(cur.fetchmany(2)) # Multiple rows: ((1, '1'), (2, '2')) # Get column information print(cur.column_names()) # ['number', 'str'] print(cur.column_types()) # ['UInt64', 'String'] # Use the cursor as an iterator cur.execute("SELECT number FROM system.numbers LIMIT 3") for row in cur: print(row) # Always close resources when done cur.close() conn.close()
For more details, see examples/connect.py.
๐๏ธ Query On File
(Parquet, CSV, JSON, Arrow, ORC and 60+)
You can execute SQL and return desired format data.
import chdb res = chdb.query('select version()', 'Pretty'); print(res)
Work with Parquet or CSV
# See more data type format in tests/format_output.py res = chdb.query('select * from file("data.parquet", Parquet)', 'JSON'); print(res) res = chdb.query('select * from file("data.csv", CSV)', 'CSV'); print(res) print(f"SQL read {res.rows_read()} rows, {res.bytes_read()} bytes, storage read {res.storage_rows_read()} rows, {res.storage_bytes_read()} bytes, elapsed {res.elapsed()} seconds")
Parameterized queries
import chdb df = chdb.query( "SELECT toDate({base_date:String}) + number AS date " "FROM numbers({total_days:UInt64}) " "LIMIT {items_per_page:UInt64}", "DataFrame", params={"base_date": "2025-01-01", "total_days": 10, "items_per_page": 2}, ) print(df) # date # 0 2025-01-01 # 1 2025-01-02
For more details, see:
- ClickHouse SQL syntax: defining and using query parameters
- How to Use Query Parameters in ClickHouse
Pandas dataframe output
# See more in https://clickhouse.com/docs/en/interfaces/formats chdb.query('select * from file("data.parquet", Parquet)', 'Dataframe')
๐๏ธ Query On Table
(Pandas DataFrame, Parquet file/bytes, Arrow bytes)
Query On Pandas DataFrame
import chdb.dataframe as cdf import pandas as pd # Join 2 DataFrames df1 = pd.DataFrame({'a': [1, 2, 3], 'b': ["one", "two", "three"]}) df2 = pd.DataFrame({'c': [1, 2, 3], 'd': ["โ ", "โก", "โข"]}) ret_tbl = cdf.query(sql="select * from __tbl1__ t1 join __tbl2__ t2 on t1.a = t2.c", tbl1=df1, tbl2=df2) print(ret_tbl) # Query on the DataFrame Table print(ret_tbl.query('select b, sum(a) from __table__ group by b')) # Pandas DataFrames are automatically registered as temporary tables in ClickHouse chdb.query("SELECT * FROM Python(df1) t1 JOIN Python(df2) t2 ON t1.a = t2.c").show()
๐๏ธ Query with Stateful Session
from chdb import session as chs ## Create DB, Table, View in temp session, auto cleanup when session is deleted. sess = chs.Session() sess.query("CREATE DATABASE IF NOT EXISTS db_xxx ENGINE = Atomic") sess.query("CREATE TABLE IF NOT EXISTS db_xxx.log_table_xxx (x String, y Int) ENGINE = Log;") sess.query("INSERT INTO db_xxx.log_table_xxx VALUES ('a', 1), ('b', 3), ('c', 2), ('d', 5);") sess.query( "CREATE VIEW db_xxx.view_xxx AS SELECT * FROM db_xxx.log_table_xxx LIMIT 4;" ) print("Select from view:\n") print(sess.query("SELECT * FROM db_xxx.view_xxx", "Pretty"))
see also: test_stateful.py.
๐๏ธ Query with Python DB-API 2.0
import chdb.dbapi as dbapi print("chdb driver version: {0}".format(dbapi.get_client_info())) conn1 = dbapi.connect() cur1 = conn1.cursor() cur1.execute('select version()') print("description: ", cur1.description) print("data: ", cur1.fetchone()) cur1.close() conn1.close()
๐๏ธ Query with UDF (User Defined Functions)
from chdb.udf import chdb_udf from chdb import query @chdb_udf() def sum_udf(lhs, rhs): return int(lhs) + int(rhs) print(query("select sum_udf(12,22)"))
Some notes on chDB Python UDF(User Defined Function) decorator.
- The function should be stateless. So, only UDFs are supported, not UDAFs(User Defined Aggregation Function).
- Default return type is String. If you want to change the return type, you can pass in the return type as an argument. The return type should be one of the following: https://clickhouse.com/docs/en/sql-reference/data-types
- The function should take in arguments of type String. As the input is TabSeparated, all arguments are strings.
- The function will be called for each line of input. Something like this:
def sum_udf(lhs, rhs): return int(lhs) + int(rhs) for line in sys.stdin: args = line.strip().split('\t') lhs = args[0] rhs = args[1] print(sum_udf(lhs, rhs)) sys.stdout.flush() - The function should be pure python function. You SHOULD import all python modules used IN THE FUNCTION.
def func_use_json(arg): import json ... - Python interpertor used is the same as the one used to run the script. Get from
sys.executable
see also: test_udf.py.
๐๏ธ Streaming Query
Process large datasets with constant memory usage through chunked streaming.
from chdb import session as chs sess = chs.Session() # Example 1: Basic example of using streaming query rows_cnt = 0 with sess.send_query("SELECT * FROM numbers(200000)", "CSV") as stream_result: for chunk in stream_result: rows_cnt += chunk.rows_read() print(rows_cnt) # 200000 # Example 2: Manual iteration with fetch() rows_cnt = 0 stream_result = sess.send_query("SELECT * FROM numbers(200000)", "CSV") while True: chunk = stream_result.fetch() if chunk is None: break rows_cnt += chunk.rows_read() print(rows_cnt) # 200000 # Example 3: Early cancellation demo rows_cnt = 0 stream_result = sess.send_query("SELECT * FROM numbers(200000)", "CSV") while True: chunk = stream_result.fetch() if chunk is None: break if rows_cnt > 0: stream_result.close() break rows_cnt += chunk.rows_read() print(rows_cnt) # 65409 # Example 4: Using PyArrow RecordBatchReader for batch export and integration with other libraries import pyarrow as pa from deltalake import write_deltalake # Get streaming result in arrow format stream_result = sess.send_query("SELECT * FROM numbers(100000)", "Arrow") # Create RecordBatchReader with custom batch size (default rows_per_batch=1000000) batch_reader = stream_result.record_batch(rows_per_batch=10000) # Use RecordBatchReader with external libraries like Delta Lake write_deltalake( table_or_uri="./my_delta_table", data=batch_reader, mode="overwrite" ) stream_result.close() sess.close()
Important Note: When using streaming queries, if the StreamingResult is not fully consumed (due to errors or early termination), you must explicitly call stream_result.close() to release resources, or use the with statement for automatic cleanup. Failure to do so may block subsequent queries.
For more details, see test_streaming_query.py and test_arrow_record_reader_deltalake.py.
๐๏ธ Python Table Engine
Query on Pandas DataFrame
import chdb import pandas as pd df = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": ["tom", "jerry", "auxten", "tom", "jerry", "auxten"], "dict_col": [ {'id': 1, 'tags': ['urgent', 'important'], 'metadata': {'created': '2024-01-01'}}, {'id': 2, 'tags': ['normal'], 'metadata': {'created': '2024-02-01'}}, {'id': 3, 'name': 'tom'}, {'id': 4, 'value': '100'}, {'id': 5, 'value': 101}, {'id': 6, 'value': 102}, ], } ) chdb.query("SELECT b, sum(a) FROM Python(df) GROUP BY b ORDER BY b").show() chdb.query("SELECT dict_col.id FROM Python(df) WHERE dict_col.value='100'").show()
Query on Arrow Table
import chdb import pyarrow as pa arrow_table = pa.table( { "a": [1, 2, 3, 4, 5, 6], "b": ["tom", "jerry", "auxten", "tom", "jerry", "auxten"], "dict_col": [ {'id': 1, 'value': 'tom'}, {'id': 2, 'value': 'jerry'}, {'id': 3, 'value': 'auxten'}, {'id': 4, 'value': 'tom'}, {'id': 5, 'value': 'jerry'}, {'id': 6, 'value': 'auxten'}, ], } ) chdb.query("SELECT b, sum(a) FROM Python(arrow_table) GROUP BY b ORDER BY b").show() chdb.query("SELECT dict_col.id FROM Python(arrow_table) WHERE dict_col.value='tom'").show()
Query on chdb.PyReader class instance
- You must inherit from chdb.PyReader class and implement the
readmethod. - The
readmethod should:- return a list of lists, the first demension is the column, the second dimension is the row, the columns order should be the same as the first arg
col_namesofread. - return an empty list when there is no more data to read.
- be stateful, the cursor should be updated in the
readmethod.
- return a list of lists, the first demension is the column, the second dimension is the row, the columns order should be the same as the first arg
- An optional
get_schemamethod can be implemented to return the schema of the table. The prototype isdef get_schema(self) -> List[Tuple[str, str]]:, the return value is a list of tuples, each tuple contains the column name and the column type. The column type should be one of the following: https://clickhouse.com/docs/en/sql-reference/data-types
import chdb class myReader(chdb.PyReader): def __init__(self, data): self.data = data self.cursor = 0 super().__init__(data) def read(self, col_names, count): print("Python func read", col_names, count, self.cursor) if self.cursor >= len(self.data["a"]): self.cursor = 0 return [] block = [self.data[col] for col in col_names] self.cursor += len(block[0]) return block def get_schema(self): return [ ("a", "int"), ("b", "str"), ("dict_col", "json") ] reader = myReader( { "a": [1, 2, 3, 4, 5, 6], "b": ["tom", "jerry", "auxten", "tom", "jerry", "auxten"], "dict_col": [ {'id': 1, 'tags': ['urgent', 'important'], 'metadata': {'created': '2024-01-01'}}, {'id': 2, 'tags': ['normal'], 'metadata': {'created': '2024-02-01'}}, {'id': 3, 'name': 'tom'}, {'id': 4, 'value': '100'}, {'id': 5, 'value': 101}, {'id': 6, 'value': 102} ], } ) chdb.query("SELECT b, sum(a) FROM Python(reader) GROUP BY b ORDER BY b").show() chdb.query("SELECT dict_col.id FROM Python(reader) WHERE dict_col.value='100'").show()
see also: test_query_py.py and test_query_json.py.
JSON Type Inference
chDB automatically converts Python dictionary objects to ClickHouse JSON types from these sources:
-
Pandas DataFrame
- Columns with
objectdtype are sampled (default 10,000 rows) to detect JSON structures. - Control sampling via SQL settings:
SET pandas_analyze_sample = 10000 -- Default sampling SET pandas_analyze_sample = 0 -- Force String type SET pandas_analyze_sample = -1 -- Force JSON type
- Columns are converted to
Stringif sampling finds non-dictionary values.
- Columns with
-
chdb.PyReader
- Implement custom schema mapping in
get_schema():def get_schema(self): return [ ("c1", "JSON"), # Explicit JSON mapping ("c2", "String") ]
- Column types declared as "JSON" will bypass auto-detection.
- Implement custom schema mapping in
When converting Python dictionary objects to JSON columns:
-
Nested Structures
- Recursively process nested dictionaries, lists, tuples and NumPy arrays.
-
Primitive Types
- Automatic type recognition for basic types such as integers, floats, strings, and booleans, and more.
-
Complex Objects
- Non-primitive types will be converted to strings.
Limitations
- Column types supported: pandas.Series, pyarrow.array, chdb.PyReader
- Data types supported: Int, UInt, Float, String, Date, DateTime, Decimal
- Python Object type will be converted to String
- Pandas DataFrame performance is all of the best, Arrow Table is better than PyReader
For more examples, see examples and tests.
๐ง AI-assisted SQL generation
chDB can translate natural language prompts into SQL. Configure the AI client through the connection (or session) string parameters:
ai_provider:openaioranthropic. Defaults to OpenAI-compatible whenai_base_urlis set, otherwise auto-detected.ai_api_key: API key; falls back toAI_API_KEY,OPENAI_API_KEY, orANTHROPIC_API_KEYenv vars.ai_base_url: Custom base URL for OpenAI-compatible endpoints.ai_model: Model name (e.g.,gpt-4o-mini,claude-3-opus-20240229).ai_temperature: Generation temperature (default0.0).ai_max_tokens: Maximum tokens to generate (default1000).ai_timeout_seconds: Request timeout in seconds (default30).ai_system_prompt: Custom system prompt to steer SQL generation.ai_max_steps: Maximum tool-calling steps (default5).ai_enable_schema_access: Allow the AI to inspect database/table metadata (defaulttrue).
If AI is not enabled in the build or the provider is misconfigured, generate_sql/ask raise a RuntimeError.
import chdb # Use env OPENAI_API_KEY/AI_API_KEY/ANTHROPIC_API_KEY for credentials conn = chdb.connect("file::memory:?ai_provider=openai&ai_model=gpt-4o-mini") conn.query("CREATE TABLE nums (n UInt32) ENGINE = Memory") conn.query("INSERT INTO nums VALUES (1), (2), (3)") sql = conn.generate_sql("Select all rows from nums ordered by n desc") print(sql) # e.g., SELECT * FROM nums ORDER BY n DESC # ask(): one-call generate + execute # `ask()` first calls `generate_sql` then runs `query`; keyword arguments are forwarded to `query`. print(conn.ask("List the numbers table", format="Pretty"))
Session objects support the same helpers and defaults; Session.ask() forwards keyword arguments to Session.query:
from chdb import session as chs with chs.Session("file::memory:?ai_provider=openai") as sess: sess.query("CREATE TABLE users (id UInt32, name String) ENGINE = Memory") sess.query("INSERT INTO users VALUES (1), (2), (3)") df = sess.ask("Show all users ordered by id", format="DataFrame") print(df)
Demos and Examples
- Project Documentation and Usage Examples
- Colab Notebooks and other Script Examples
Benchmark
Documentation
- For chdb specific examples and documentation refer to chDB docs
- For SQL syntax, please refer to ClickHouse SQL Reference
Events
- Demo chDB at ClickHouse v23.7 livehouse! and Slides
Contributing
Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated. There are something you can help:
- Help test and report bugs
- Help improve documentation
- Help improve code quality and performance
Bindings
We welcome bindings for other languages, please refer to bindings for more details.
Version Guide
Please refer to VERSION-GUIDE.md for more details.
Paper
License
Apache 2.0, see LICENSE for more information.
Acknowledgments
chDB is mainly based on ClickHouse 1 for trade mark and other reasons, I named it chDB.
Contact
- Discord: https://discord.gg/D2Daa2fM5K
- Email: auxten@clickhouse.com
- Twitter: @chdb
-
ClickHouseยฎ is a trademark of ClickHouse Inc. All trademarks, service marks, and logos mentioned or depicted are the property of their respective owners. The use of any third-party trademarks, brand names, product names, and company names does not imply endorsement, affiliation, or association with the respective owners. โฉ โฉ2

