GitHub - agoda-com/api-agent: Universal MCP server for GraphQL/REST APIs

4 min read Original article β†—

API Agent

Turn any API into an MCP server. Query in English. Get resultsβ€”even when the API can't.

Point at any GraphQL or REST API. Ask questions in natural language. The agent fetches data, stores it in DuckDB, and runs SQL post-processing. Rankings, filters, JOINs work even if the API doesn't support them.

What Makes It Different

🎯 Zero config. No custom MCP code per API. Point at a GraphQL endpoint or OpenAPI spec β€” schema introspected automatically.

✨ SQL post-processing. API returns 10,000 unsorted rows? Agent ranks top 10. No GROUP BY? Agent aggregates. Need JOINs across endpoints? Agent combines.

πŸ”’ Safe by default. Read-only. Mutations blocked unless explicitly allowed.

🧠 Recipe learning. Successful queries become cached pipelines. Reuse instantly without LLM reasoning.

Quick Start

1. Run (choose one):

# Direct run (no clone needed)
OPENAI_API_KEY=your_key uvx --from git+https://github.com/agoda-com/api-agent api-agent

# Or clone & run
git clone https://github.com/agoda-com/api-agent.git && cd api-agent
uv sync && OPENAI_API_KEY=your_key uv run api-agent

# Or Docker
git clone https://github.com/agoda-com/api-agent
docker build -t api-agent .
docker run -p 3000:3000 -e OPENAI_API_KEY=your_key api-agent

2. Add to any MCP client:

{
  "mcpServers": {
    "rickandmorty": {
      "url": "http://localhost:3000/mcp",
      "headers": {
        "X-Target-URL": "https://rickandmortyapi.com/graphql",
        "X-API-Type": "graphql"
      }
    }
  }
}

3. Ask questions:

  • "Show characters from Earth, only alive ones, group by species"
  • "Top 10 characters by episode count"
  • "Compare alive vs dead by species, only species with 10+ characters"

That's it. Agent introspects schema, generates queries, runs SQL post-processing.

More Examples

REST API (Petstore):

{
  "mcpServers": {
    "petstore": {
      "url": "http://localhost:3000/mcp",
      "headers": {
        "X-Target-URL": "https://petstore3.swagger.io/api/v3/openapi.json",
        "X-API-Type": "rest"
      }
    }
  }
}

Your own API with auth:

{
  "mcpServers": {
    "myapi": {
      "url": "http://localhost:3000/mcp",
      "headers": {
        "X-Target-URL": "https://api.example.com/graphql",
        "X-API-Type": "graphql",
        "X-Target-Headers": "{\"Authorization\": \"Bearer YOUR_TOKEN\"}"
      }
    }
  }
}

Reference

Headers

Header Required Description
X-Target-URL Yes GraphQL endpoint OR OpenAPI spec URL
X-API-Type Yes graphql or rest
X-Target-Headers No JSON auth headers, e.g. {"Authorization": "Bearer xxx"}
X-API-Name No Override tool name prefix (default: auto-generated)
X-Base-URL No Override base URL for REST API calls
X-Allow-Unsafe-Paths No JSON array of glob patterns for POST/PUT/DELETE/PATCH
X-Poll-Paths No JSON array of paths requiring polling (enables poll tool)
X-Include-Result No Include full uncapped result field in output

MCP Tools

Core tools (2 per API):

Tool Input Output
{prefix}_query Natural language question {ok, data, queries/api_calls}
{prefix}_execute GraphQL: query, variables / REST: method, path, params {ok, data}

Tool names auto-generated from URL (e.g., example_query). Override with X-API-Name.

Recipe tools (dynamic, added as recipes are learned):

Tool Input Output
r_{recipe_slug} flat recipe-specific params, return_directly (bool) CSV or {ok, data, executed_queries/calls}

Cached pipelines, no LLM reasoning. Appear after successful queries. Clients notified via tools/list_changed.

Configuration

Variable Required Default Description
OPENAI_API_KEY Yes - OpenAI API key (or custom LLM key)
OPENAI_BASE_URL No https://api.openai.com/v1 Custom LLM endpoint
API_AGENT_MODEL_NAME No gpt-5.2 Model (e.g., gpt-5.2)
API_AGENT_PORT No 3000 Server port
API_AGENT_ENABLE_RECIPES No true Enable recipe learning & caching
API_AGENT_RECIPE_CACHE_SIZE No 64 Max cached recipes (LRU eviction)
OTEL_EXPORTER_OTLP_ENDPOINT No - OpenTelemetry tracing endpoint

How It Works

sequenceDiagram
    participant U as User
    participant M as MCP Server
    participant A as Agent
    participant G as Target API

    U->>M: Question + Headers
    M->>G: Schema introspection
    G-->>M: Schema
    M->>A: Schema + question
    A->>G: API call
    G-->>A: Data β†’ stored in DuckDB
    A->>A: SQL post-processing
    A-->>M: Summary
    M-->>U: {ok, data, queries[]}
Loading

Architecture

flowchart TB
    subgraph Client["MCP Client"]
        H["Headers: X-Target-URL, X-API-Type"]
    end

    subgraph MCP["MCP Server (FastMCP)"]
        Q["{prefix}_query"]
        E["{prefix}_execute"]
        R["r_{recipe} (dynamic)"]
    end

    subgraph Agent["Agents (OpenAI Agents SDK)"]
        GA["GraphQL Agent"]
        RA["REST Agent"]
    end

    subgraph Exec["Executors"]
        HTTP["HTTP Client"]
        Duck["DuckDB"]
    end

    Client -->|NL + headers| MCP
    Q -->|graphql| GA
    Q -->|rest| RA
    E --> HTTP
    R -->|"no LLM"| HTTP
    R --> Duck
    GA --> HTTP
    RA --> HTTP
    GA --> Duck
    RA --> Duck
    HTTP --> API[Target API]
Loading

Stack: FastMCP β€’ OpenAI Agents SDK β€’ DuckDB


Recipe Learning

Agent learns reusable patterns from successful queries:

  1. Executes β€” API calls + SQL via LLM reasoning
  2. Extracts β€” LLM converts trace into parameterized template
  3. Caches β€” Stores recipe keyed by (API, schema hash)
  4. Exposes β€” Recipe becomes MCP tool (r_{name}) callable without LLM
flowchart LR
    subgraph First["First Query via {prefix}_query"]
        Q1["'Top 5 users by age'"]
        A1["Agent reasons"]
        E1["API + SQL"]
        R1["Recipe extracted"]
    end

    subgraph Tools["MCP Tools"]
        T["r_get_top_users<br/>params: {limit}"]
    end

    subgraph Reuse["Direct Call"]
        Q2["r_get_top_users({limit: 10})"]
        X["Execute directly"]
    end

    Q1 --> A1 --> E1 --> R1 --> T
    Q2 --> T --> X
Loading

Recipes auto-expire on schema changes. Disable with API_AGENT_ENABLE_RECIPES=false.


Development

git clone https://github.com/agoda-com/api-agent.git
cd api-agent
uv sync --group dev
uv run pytest tests/ -v      # Tests
uv run ruff check api_agent/  # Lint
uv run ty check               # Type check

Observability

Set OTEL_EXPORTER_OTLP_ENDPOINT to enable OpenTelemetry tracing. Works with Jaeger, Zipkin, Grafana Tempo, Arize Phoenix.