GitHub - DrewThomasson/ebook2audiobook: Generate audiobooks from e-books, voice cloning & 1107+ languages!

12 min read Original article ↗

📚 ebook2audiobook

CPU/GPU Converter from eBooks to audiobooks with chapters and metadata
using XTTSv2, Bark, Vits, Fairseq, YourTTS, Tacotron2 and more. Supports voice cloning and 1158 languages!

Important

This tool is intended for use with non-DRM, legally acquired eBooks only.
The authors are not responsible for any misuse of this software or any resulting legal consequences.
Use this tool responsibly and in accordance with all applicable laws.

Discord

Thanks to support ebook2audiobook developers!

Ko-Fi

Run locally

Quick Start

Docker Build Download

Platform Docker Pull Count

Run Remotely

Hugging Face Free Google Colab Kaggle

GUI Interface

demo_web_gui

Click to see images of Web GUI GUI Screen 1 GUI Screen 2 GUI Screen 3

Demos

New Default Voice Demo

Sherlock.mp4
More Demos

ASMR Voice

WhisperASMR-Demo.mp4

Rainy Day Voice

Rainy_Day_voice_Demo.mp4

Scarlett Voice

ScarlettJohansson-Demo.mp4

David Attenborough Voice

shortStory.mp4

Example

Example

README.md

Table of Contents

Features

  • 📚 Splits eBook into chapters for organized audio.
  • 🎙️ High-quality text-to-speech with Coqui XTTSv2 and Fairseq (and more).
  • 🗣️ Optional voice cloning with your own voice file.
  • 🌍 Supports +1110 languages (English by default). List of Supported languages
  • 🖥️ Designed to run on 4GB RAM.

Supported Languages

Arabic (ar) Chinese (zh) English (en) Spanish (es)
French (fr) German (de) Italian (it) Portuguese (pt)
Polish (pl) Turkish (tr) Russian (ru) Dutch (nl)
Czech (cs) Japanese (ja) Hindi (hi) Bengali (bn)
Hungarian (hu) Korean (ko) Vietnamese (vi) Swedish (sv)
Persian (fa) Yoruba (yo) Swahili (sw) Indonesian (id)
Slovak (sk) Croatian (hr) Tamil (ta) Danish (da)

Hardware Requirements

  • 2gb RAM minimum, 8GB recommended
  • Virtualization enabled if running on windows (Docker only)
  • CPU (intel, AMD, ARM), GPU (Nvidia, AMD*, Intel*) (Recommended), MPS (Apple Silicon CPU) *available very soon

Important

Before to post an install or bug issue search carefully to the opened and closed issues TAB
to be sure your issue does not exist already.

Note

Lacking of any standards structure like what is a chapter, paragraph, preface etc.
you should first remove manually any text you don't want to be converted in audio.

Instructions

  1. Clone repo

    git clone https://github.com/DrewThomasson/ebook2audiobook.git
    cd ebook2audiobook
  2. Install / Run ebook2audiobook:

    • Linux/MacOS

      ./ebook2audiobook.sh  # Run launch script

      Note for MacOS users: homebrew is installed to install missing programs.

    • Mac Launcher
      Double click Mac Ebook2Audiobook Launcher.command

    • Windows

      ebook2audiobook.cmd  # Run launch script or double click on it

      Note for Windows users: scoop is installed to install missing programs without administrator privileges.

    • Windows Launcher
      Double click ebook2audiobook.cmd

  3. Open the Web App: Click the URL provided in the terminal to access the web app and convert eBooks. http://localhost:7860/

  4. For Public Link: ./ebook2audiobook.sh --share (Linux/MacOS) ebook2audiobook.cmd --share (Windows) python app.py --share (all OS)

Important

If the script is stopped and run again, you need to refresh your gradio GUI interface
to let the web page reconnect to the new connection socket.

Basic Usage

  • Linux/MacOS:

    ./ebook2audiobook.sh --headless --ebook <path_to_ebook_file> \
        --voice [path_to_voice_file] --language [language_code]
  • Windows

    ebook2audiobook.cmd --headless --ebook <path_to_ebook_file>
        --voice [path_to_voice_file] --language [language_code]
  • [--ebook]: Path to your eBook file

  • [--voice]: Voice cloning file path (optional)

  • [--language]: Language code in ISO-639-3 (i.e.: ita for italian, eng for english, deu for german...).
    Default language is eng and --language is optional for default language set in ./lib/lang.py.
    The ISO-639-1 2 letters codes are also supported.

Example of Custom Model Zip Upload

(must be a .zip file containing the mandatory model files. Example for XTTSv2: config.json, model.pth, vocab.json and ref.wav)

  • Linux/MacOS

    ./ebook2audiobook.sh --headless --ebook <ebook_file_path> \
        --language <language> --custom_model <custom_model_path>
  • Windows

    ebook2audiobook.cmd --headless --ebook <ebook_file_path> \
        --language <language> --custom_model <custom_model_path>

    Note: the ref.wav of your custom model is always the voice selected for the conversion

  • <custom_model_path>: Path to model_name.zip file, which must contain (according to the tts engine) all the mandatory files
    (see ./lib/models.py).

For Detailed Guide with list of all Parameters to use

  • Linux/MacOS
    ./ebook2audiobook.sh --help
  • Windows
    ebook2audiobook.cmd --help
  • Or for all OS python app.py --help
usage: app.py [-h] [--session SESSION] [--share] [--headless] [--ebook EBOOK] [--ebooks_dir EBOOKS_DIR]
              [--language LANGUAGE] [--voice VOICE]
              [--device {{'proc': 'cpu', 'found': True},{'proc': 'cuda', 'found': False},{'proc': 'mps', 'found': False},{'proc': 'rocm', 'found': False},{'proc': 'xpu', 'found': False}}]
              [--tts_engine {XTTSv2,BARK,VITS,FAIRSEQ,TACOTRON2,YOURTTS,xtts,bark,vits,fairseq,tacotron,yourtts}]
              [--custom_model CUSTOM_MODEL] [--fine_tuned FINE_TUNED] [--output_format OUTPUT_FORMAT]
              [--output_channel OUTPUT_CHANNEL] [--temperature TEMPERATURE] [--length_penalty LENGTH_PENALTY]
              [--num_beams NUM_BEAMS] [--repetition_penalty REPETITION_PENALTY] [--top_k TOP_K] [--top_p TOP_P]
              [--speed SPEED] [--enable_text_splitting] [--text_temp TEXT_TEMP] [--waveform_temp WAVEFORM_TEMP]
              [--output_dir OUTPUT_DIR] [--version]

Convert eBooks to Audiobooks using a Text-to-Speech model. You can either launch the Gradio interface or run the script in headless mode for direct conversion.

options:
  -h, --help            show this help message and exit
  --session SESSION     Session to resume the conversion in case of interruption, crash,
                            or reuse of custom models and custom cloning voices.

**** The following options are for all modes:
  Optional

**** The following option are for gradio/gui mode only:
  Optional

  --share               Enable a public shareable Gradio link.

**** The following options are for --headless mode only:
  --headless            Run the script in headless mode
  --ebook EBOOK         Path to the ebook file for conversion. Cannot be used when --ebooks_dir is present.
  --ebooks_dir EBOOKS_DIR
                        Relative or absolute path of the directory containing the files to convert.
                            Cannot be used when --ebook is present.
  --language LANGUAGE   Language of the e-book. Default language is set
                            in ./lib/lang.py sed as default if not present. All compatible language codes are in ./lib/lang.py

optional parameters:
  --voice VOICE         (Optional) Path to the voice cloning file for TTS engine.
                            Uses the default voice if not present.
  --device {{'proc': 'cpu', 'found': True},{'proc': 'cuda', 'found': False},{'proc': 'mps', 'found': False},{'proc': 'rocm', 'found': False},{'proc': 'xpu', 'found': False}}
                        (Optional) Pprocessor unit type for the conversion.
                            Default is set in ./lib/conf.py if not present. Fall back to CPU if CUDA or MPS is not available.
  --tts_engine {XTTSv2,BARK,VITS,FAIRSEQ,TACOTRON2,YOURTTS,xtts,bark,vits,fairseq,tacotron,yourtts}
                        (Optional) Preferred TTS engine (available are: ['XTTSv2', 'BARK', 'VITS', 'FAIRSEQ', 'TACOTRON2', 'YOURTTS', 'xtts', 'bark', 'vits', 'fairseq', 'tacotron', 'yourtts'].
                            Default depends on the selected language. The tts engine should be compatible with the chosen language
  --custom_model CUSTOM_MODEL
                        (Optional) Path to the custom model zip file cntaining mandatory model files.
                            Please refer to ./lib/models.py
  --fine_tuned FINE_TUNED
                        (Optional) Fine tuned model path. Default is builtin model.
  --output_format OUTPUT_FORMAT
                        (Optional) Output audio format. Default is m4b set in ./lib/conf.py
  --output_channel OUTPUT_CHANNEL
                        (Optional) Output audio channel. Default is mono set in ./lib/conf.py
  --temperature TEMPERATURE
                        (xtts only, optional) Temperature for the model.
                            Default to config.json model. Higher temperatures lead to more creative outputs.
  --length_penalty LENGTH_PENALTY
                        (xtts only, optional) A length penalty applied to the autoregressive decoder.
                            Default to config.json model. Not applied to custom models.
  --num_beams NUM_BEAMS
                        (xtts only, optional) Controls how many alternative sequences the model explores. Must be equal or greater than length penalty.
                            Default to config.json model.
  --repetition_penalty REPETITION_PENALTY
                        (xtts only, optional) A penalty that prevents the autoregressive decoder from repeating itself.
                            Default to config.json model.
  --top_k TOP_K         (xtts only, optional) Top-k sampling.
                            Lower values mean more likely outputs and increased audio generation speed.
                            Default to config.json model.
  --top_p TOP_P         (xtts only, optional) Top-p sampling.
                            Lower values mean more likely outputs and increased audio generation speed. Default to config.json model.
  --speed SPEED         (xtts only, optional) Speed factor for the speech generation.
                            Default to config.json model.
  --enable_text_splitting
                        (xtts only, optional) Enable TTS text splitting. This option is known to not be very efficient.
                            Default to config.json model.
  --text_temp TEXT_TEMP
                        (bark only, optional) Text Temperature for the model.
                            Default to config.json model.
  --waveform_temp WAVEFORM_TEMP
                        (bark only, optional) Waveform Temperature for the model.
                            Default to config.json model.
  --output_dir OUTPUT_DIR
                        (Optional) Path to the output directory. Default is set in ./lib/conf.py
  --version             Show the version of the script and exit

Example usage:
Windows:
    Gradio/GUI:
    ebook2audiobook.cmd
    Headless mode:
    ebook2audiobook.cmd --headless --ebook '/path/to/file' --language eng
Linux/Mac:
    Gradio/GUI:
    ./ebook2audiobook.sh
    Headless mode:
    ./ebook2audiobook.sh --headless --ebook '/path/to/file' --language eng

Docker build image:
    Windows:
    ebook2audiobook.cmd --script_mode build_docker
    Linux/Mac
    ./ebook2audiobook.sh --script_mode build_docker
Docker run image:
    Gradio/GUI:
        CPU:
        docker run --rm -it -p 7860:7860 ebook2audiobook:cpu
        CUDA:
        docker run --gpus all --rm -it -p 7860:7860 ebook2audiobook:cu[118/121/128 etc..]
        ROCM:
        docker run --device=/dev/kfd --device=/dev/dri --rm -it -p 7860:7860 ebook2audiobook:rocm[5.5/6.1/6.4 etc..]
        XPU:
        docker run --device=/dev/dri --rm -it -p 7860:7860 ebook2audiobook:xpu
        JETSON:
        docker run --runtime nvidia  --rm -it -p 7860:7860 ebook2audiobook:jetson[51/60/61 etc...]
    Headless mode:
        CPU:
        docker run --rm -it -v "/my/real/ebooks/folder/absolute/path:/app/ebooks" -v "/my/real/output/folder/absolute/path:/app/audiobooks" -p 7860:7860 ebook2audiobook:cpu --headless --ebook "/app/ebooks/myfile.pdf" [--voice /app/my/voicepath/voice.mp3 etc..]
        CUDA:
        docker run --gpus all --rm -it -v "/my/real/ebooks/folder/absolute/path:/app/ebooks" -v "/my/real/output/folder/absolute/path:/app/audiobooks" -p 7860:7860 ebook2audiobook:cu[118/121/128 etc..] --headless --ebook "/app/ebooks/myfile.pdf" [--voice /app/my/voicepath/voice.mp3 etc..]
        ROCM:
        docker run --device=/dev/kfd --device=/dev/dri --rm -it -v "/my/real/ebooks/folder/absolute/path:/app/ebooks" -v "/my/real/output/folder/absolute/path:/app/audiobooks" -p 7860:7860 ebook2audiobook:rocm[5.5/6.1/6.4 etc..] --headless --ebook "/app/ebooks/myfile.pdf" [--voice /app/my/voicepath/voice.mp3 etc..]
        XPU:
        docker run --device=/dev/dri --rm -it -v "/my/real/ebooks/folder/absolute/path:/app/ebooks" -v "/my/real/output/folder/absolute/path:/app/audiobooks" -p 7860:7860 ebook2audiobook:xpu --headless --ebook "/app/ebooks/myfile.pdf" [--voice /app/my/voicepath/voice.mp3 etc..]
        JETSON:
        docker run --runtime nvidia --rm -it -v "/my/real/ebooks/folder/absolute/path:/app/ebooks" -v "/my/real/output/folder/absolute/path:/app/audiobooks" -p 7860:7860 ebook2audiobook:jetson[51/60/61 etc...] --headless --ebook "/app/ebooks/myfile.pdf" [--voice /app/my/voicepath/voice.mp3 etc..]

    Docker Compose (i.e. for cuda 11.8, add --build to rebuild):
        DEVICE_TAG=cu118 docker compose up -d

    Podman Compose (i.e. for cuda 12.4, add --build to rebuild):
        DEVICE_TAG=cu124 podman-compose up -d

    * MPS is not exposed in docker so CPU must be used.

Tip: to add of silence (random duration between 1.0 and 1.8 seconds) into your text just use "###" or "[pause]".

NOTE: in gradio/gui mode, to cancel a running conversion, just click on the [X] from the ebook upload component.

TIP: if it needs some more pauses, just add '###' or '[pause]' between the words you wish more pause. one [pause] is a random between 0.8 to 1.6 seconds

Docker

Steps to Run

  1. Clone the Repository:
   git clone https://github.com/DrewThomasson/ebook2audiobook.git
   cd ebook2audiobook
  1. Build the container
   # Windows
   ebook2audiobook.cmd --script_mode build_docker

   # Linux/MacOS
   ./ebook2audiobook.sh --script_mode build_docker 
  1. Run the Container:
	# Gradio/GUI:

	# CPU:
		docker run --rm -it -p 7860:7860 ebook2audiobook:cpu
	# CUDA:
		docker run --gpus all --rm -it -p 7860:7860 ebook2audiobook:cu[118/121/128 etc..]
	# ROCM:
		docker run --device=/dev/kfd --device=/dev/dri --rm -it -p 7860:7860 ebook2audiobook:rocm[5.5/6.1/6.4 etc..]
	# XPU:
		docker run --device=/dev/dri --rm -it -p 7860:7860 ebook2audiobook:xpu
	# JETSON:
		docker run --runtime nvidia  --rm -it -p 7860:7860 ebook2audiobook:jetson[51/60/61 etc...]
	
	# Headless mode examples:
	
	# CPU:
		docker run --rm -it -v "/my/real/ebooks/folder/absolute/path:/app/ebooks" -v "/my/real/output/folder/absolute/path:/app/audiobooks" -p 7860:7860 ebook2audiobook:cpu --headless --ebook "/app/ebooks/myfile.pdf" [--voice /app/my/voicepath/voice.mp3 etc..]
	# CUDA:
		docker run --gpus all --rm -it -v "/my/real/ebooks/folder/absolute/path:/app/ebooks" -v "/my/real/output/folder/absolute/path:/app/audiobooks" -p 7860:7860 ebook2audiobook:cu[118/121/128 etc..] --headless --ebook "/app/ebooks/myfile.pdf" [--voice /app/my/voicepath/voice.mp3 etc..]
	# ROCM:
		docker run --device=/dev/kfd --device=/dev/dri --rm -it -v "/my/real/ebooks/folder/absolute/path:/app/ebooks" -v "/my/real/output/folder/absolute/path:/app/audiobooks" -p 7860:7860 ebook2audiobook:rocm[5.5/6.1/6.4 etc..] --headless --ebook "/app/ebooks/myfile.pdf" [--voice /app/my/voicepath/voice.mp3 etc..]
	# XPU:
		docker run --device=/dev/dri --rm -it -v "/my/real/ebooks/folder/absolute/path:/app/ebooks" -v "/my/real/output/folder/absolute/path:/app/audiobooks" -p 7860:7860 ebook2audiobook:xpu --headless --ebook "/app/ebooks/myfile.pdf" [--voice /app/my/voicepath/voice.mp3 etc..]
	# JETSON:
		docker run --runtime nvidia --rm -it -v "/my/real/ebooks/folder/absolute/path:/app/ebooks" -v "/my/real/output/folder/absolute/path:/app/audiobooks" -p 7860:7860 ebook2audiobook:jetson[51/60/61 etc...] --headless --ebook "/app/ebooks/myfile.pdf" [--voice /app/my/voicepath/voice.mp3 etc..]

    # Docker Compose (example for cuda 12.9)
    docker-compose up -d
    DEVICE_TAG=cu128 docker compose up -d # add --build if needed
    # To stop -> docker-compose down

    # Podman Compose (example for cuda 12.8)
    podman compose -f podman-compose.yml up
    DEVICE_TAG=cu128 podman-compose up -d # add --build if needed
    # To stop -> podman compose -f podman-compose.yml down
  • NOTE: MPS is not exposed in docker so CPU must be used

Common Docker Issues

Fine Tuned TTS models

Fine Tune your own XTTSv2 model

Hugging Face Kaggle Open In Colab

De-noise training data

Hugging Face GitHub Repo

Fine Tuned TTS Collection

Hugging Face

For an XTTSv2 custom model a ref audio clip of the voice reference is mandatory:

Supported eBook Formats

  • .epub, .pdf, .mobi, .txt, .html, .rtf, .chm, .lit, .pdb, .fb2, .odt, .cbr, .cbz, .prc, .lrf, .pml, .snb, .cbc, .rb, .tcr
  • Best results: .epub or .mobi for automatic chapter detection

Output Formats

  • Creates a ['m4b', 'm4a', 'mp4', 'webm', 'mov', 'mp3', 'flac', 'wav', 'ogg', 'aac'] (set in ./lib/conf.py) file with metadata and chapters.

Updating to Latest Version

git pull # Locally/Compose

docker pull athomasson2/ebook2audiobook:latest # For Pre-build docker images

Your own Ebook2Audiobook customization

You are free to modify libs/conf.py to add or remove the settings you wish. If you plan to do it just make a copy of the original conf.py so on each ebook2audiobook update you will backup your modified conf.py and put back the original one. You must plan the same process for models.py. If you wish to make your own custom model as an official ebook2audiobook fine tuned model so please contact us and we'll ad it to the models.py list.

Reverting to older Versions

Releases can be found -> here

git checkout tags/VERSION_NUM # Locally/Compose -> Example: git checkout tags/v25.7.7

athomasson2/ebook2audiobook:VERSION_NUM # For Pre-build docker images -> Example: athomasson2/ebook2audiobook:v25.7.7

Common Issues:

  • My NVIDIA GPU isn't being detected?? -> GPU ISSUES Wiki Page
  • CPU is slow (better on server smp CPU) while NVIDIA GPU can have almost real time conversion. Discussion about this For faster multilingual generation I would suggest my other project that uses piper-tts instead (It doesn't have zero-shot voice cloning though, and is Siri quality voices, but it is much faster on cpu).
  • "I'm having dependency issues" - Just use the docker, its fully self contained and has a headless mode, add --help parameter at the end of the docker run command for more information.
  • "Im getting a truncated audio issue!" - PLEASE MAKE AN ISSUE OF THIS, we don't speak every language and need advise from users to fine tune the sentence splitting logic.😊

What we need help with! 🙌

Full list of things can be found here

  • Any help from people speaking any of the supported languages to help us improve the models

Special Thanks