|
\documentclass[margin=1cm]{standalone} |
|
\usepackage{tikz,amsmath} |
|
|
|
\tikzset{ |
|
declare function = { |
|
fx1 = -1; |
|
fx2 = -4; |
|
fy1(\n) = 1.5 / 3 + 17.5 - \n; |
|
fy2(\n) = -1.5 / 3 + 17.5 - \n; |
|
gx1 = -2; |
|
gx2 = -4; |
|
gy1(\n) = 1 / 4 + \n; |
|
gy2(\n) = -1 / 4 + \n; |
|
px1(\m) = 0.5 + \m / 2; |
|
px2(\m) = -0.5 + \m / 2; |
|
py1(\n) = 0.5 + \n / 2; |
|
py2(\n) = -0.5 + \n / 2; |
|
qx1(\m) = 4 + \m / 2; |
|
qx2(\m) = -4 + \m / 2; |
|
qy1(\n) = 4 / 8 + \n / 2; |
|
qy2(\n) = -4 / 8 + \n / 2; |
|
} |
|
} |
|
|
|
\begin{document} |
|
\begin{tikzpicture} |
|
\foreach \n in {1,...,28} |
|
{ |
|
\draw (fx1, {fy1(\n)}) rectangle (fx2, {fy2(\n)}); |
|
} |
|
\foreach \n in {16,15,13,12,11,9,8,6,5,4,2,1,-1,-2,-3,-5,-6,-8,-9,-10} |
|
{ |
|
\draw[fill=black] (gx1, {gy1(\n)}) rectangle (gx2, {gy2(\n)}); |
|
} |
|
\foreach \m in {5,9,13} |
|
{ |
|
\draw[fill=black] ({px1(\m)},{py1(5)}) rectangle ({px2(\m)},{py2(5)}); |
|
} |
|
\foreach \m in {37,41,45} |
|
{ |
|
\draw[fill=black] ({px1(\m)},{py1(3)}) rectangle ({px2(\m)},{py2(3)}); |
|
} |
|
\draw[fill=black] ({qx1(24)},{qy1(1)}) rectangle ({qx2(24)},{qy2(1)}); |
|
\draw[fill=black] ({qx1(56)},{qy1(-1)}) rectangle ({qx2(56)},{qy2(-1)}); |
|
\node[draw, rectangle, inner sep=0.5cm] at (4, 16) {\huge Problem}; |
|
\node at (15, 10) { |
|
\huge |
|
$\begin{aligned} |
|
f_n(x,y) & = \max(\left|x+2.5\right|,\left|y-17.5+n\right|) \\ |
|
g_n(x,y) & = \max(\left|x+3\right|,\left|4\left(y-n\right)\right|) \\ |
|
p_{m,n}(x,y) & = \max(\left|x - \frac{m}{2}\right|,\left|y - \frac{n}{2}\right|) \\ |
|
q_{m,n}(x,y) & = \max(\left|x - \frac{m}{2}\right|,\left|8\left(y-\frac{n}{2}\right)\right|) \\ |
|
f_n(x,y) & = 1.5 \hspace{1cm} (n=1,2,...,28) \\ |
|
g_n(x,y) & \leq 1 \hspace{1cm} (n=16,15,13,12,11,9,8,6,5,4,2,1,-1,-2,-3,-5,-6,-8,-9,-10) \\ |
|
p_{m,n}(x,y) & \leq 0.5 \hspace{1cm} ((m,n)=(5,5),(9,5),(13,5),(37,3),(41,3),(45,3)) \\ |
|
q_{m,n}(x,y) & \leq 4 \hspace{1cm} ((m,n)=(24,1),(56,-1)) |
|
\end{aligned}$ |
|
}; |
|
\end{tikzpicture} |
|
\end{document} |