Bladder cancer is among the most common and deadly of cancers. Because of its high recurrence rate (50-80 percent), patients must be monitored frequently for recurrence or progression of the disease. This monitoring currently consists of visual analysis of cells taken from the patient’s bladder. It is uncomfortable, it is expensive, and it is not even especially accurate, detecting only around 60 percent of low-grade tumors.
Now, scientists have figured out how to use atomic force microscopy (AFM) to detect bladder cancer in urine samples. By analyzing only five cells, it can achieve 94 percent accuracy.
Use the force
Atomic force microscopy differs from optical microscopy in that it doesn’t produce an image of the sample. Instead, a probe scans the sample and produces a topographical map of its surface with nanoscale resolution. In engineering, atomic force microscopy is usually used to describe surfaces like ceramic and glass, as it can analyze different properties of the surface, like its roughness, fractal nature, or magnetic behavior.
While AFM has been around for 30 years, people haven’t figured out how to use it clinically.
Looking at a urine sample under a light microscope is convenient, but it’s not an accurate diagnostic method. Not all urine samples from people with cancer will harbor cancer cells, and different observers may disagree on whether the cells they see are cancerous or not.