Settings

Theme

Automorphic Numbers

pballew.blogspot.com

1 points by syllablehq a year ago · 3 comments

Reader

syllablehqOP a year ago

It just occurred to me that it was weird how 6^n always ends in 6. And that it never occured to me before that that was weird. 5s of course do that too. And I wondered what numbers do it in other bases and why. And I found this nice blog post talking about it. And was surprised to find that very large numbers also have this property.

  • syllablehqOP a year ago

    Thinking about this more... and just thinking out loud here. So this pattern essentially happens when: In whatever base you're in a number x^n gives an end of "0" plus a remainder of the number x. So a number would be automorphic if ((x^n - 1) * n) always ends in "0" (to whatever length that matches the number).

    E.g. ((6^n - 1) * 6) or ((376^n - 1) * 376) Cool

Keyboard Shortcuts

j
Next item
k
Previous item
o / Enter
Open selected item
?
Show this help
Esc
Close modal / clear selection